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])   Historical Summary of The Project 

In May 1963,   Professor G.  P.   Dicke of The Johns Hopkins Uni- 

vcrsity submitted a proposal to the Office of Naval Research for a laser 

excited Raman spectroscopy program.    He intended to apply Raman spoc- 

troscopy to the study of the crystal phonon field,   primarily as a means 

of gaining further insight into the interactions occurring in laser materials. 

A research and development task order effective 16 June I9ü;i directed 

that "The contractor shall employ laser techniques to study 

the structure of crystals,  principally fluorescent.    One technique to be 

employed will be the use of Raman scattering to measure the phonon 

spectra of various crystalline substances. " 

During the first year of this contract Professor Diekc and 

Dr.   Wilbur Peters carried out a series of stimulated Raman scattering 

experiments using a Korad giant pulse ruby laser.    These experiments 

were not completed,  however,  and were succeeded during the following 

year by spontaneous Raman scattering experiments utilizing a Spectra- 

Physics 8 mw C. W,  He-Ne laser. 

Dr.   Dieke died suddenly on August 2hth 1965,  and responsibility 

for the work was taken over by Dr.   H.   Z,   Cummins who subsequently 

became principal investigator.  At that time,   a Spectra-Physics Model 

12Ö He-Ne laser producing 70 mw of 6328 A radiation was acquired for 

an exciting source.    Subsequently a Spectra-Physics Model 140 one watt 

argon ion laser was added to the apparatus,  along with a Spex tandem 

grating monochromator and modern "photon counting" electronics. 
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1)   Historical Summary of The Project 

In May I9fi3,   Professor G,  II.   Diekc of Tho .Johns Hopkins Uni- 

versity submitted a proposal to the Office of Naval Research for a laser 

excited Raman spectroscopy program.    He intended to apply Raman spcc- 

troscopy to the study of the crystal phonon field,   primarily as a means 

of gaining further insight into the interactions occurring in laser materials. 

A research and development task order effective 16 June Idd'.i directed 

that "The contractor shall employ laser techniques to study 

the structure of crystals,  principally fluorescent.    One technique to be 

employed will be the use of Raman scattering to measure the phonon 

spectra of various crystalline substances. " 

During the first year of this contract Professor Dieke and 

Dr.  Wilbur Peters carried out a series of stimulated Raman scattering 

experiments using a Korad giant pulse ruby laser.    These experiments 

were not completed,  however,  and were succeeded during the following 

year by spontaneous Raman scattering experiments utilizing a Spectra- 

Physics 8 mw C. W.  He-Ne laser. 

Dr.   Dieke died suddenly on August 2.'ith 1965,  and responsibility 

for the work was taken over by Dr.   H.   Z.   Cummins who subsequently 

became principal investigator.  At that time,  ;i Spectra-Physics Model 

125 He-Ne laser producing 70 mw of 6.'i28 A radiation was acquired for 

an exciting source.    Subsequently a Spectra-Physics Model 140 one watt 

argon ion laser was added to the apparatus,  along with a Spex tandem 

grating monochromator and modern "photon counting" electronics. 
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The contract was extended year by year unlil  reaching iinal termi- 

nation on Juno la,  1969. 

11)   Scientific Summary 

Initial efforts aimed at exploiting stimulated Raman scattering 

for investigating crystal ph >non fields were abandoned after one year 

for two reasons:   (1) Stimulated scattering tends to oceur preferentially 

in one mode,   and the other (weaker) modes arc never se-r-n,  ami (2) the 

giant pulse required for producing Stimulated scattering frequently 

destroys the crystal. 

Daring the second year,  a spontaneous Raman scattering appa- 

ratus was constructed using a Spect ra-Physics Model Hi 8 mw He-Ne 

laser as the exciting source.    The initial experiments with the apparatus 

were on calcium fluoride and calcium tungstate crystals doped with 

erbium and samarium.    These materials are also used as the active 

medium in lasers.    The many lines which were observed in the laser- 

excited spectra,  however,  were found to be caused by fluorescence 

rather than by Raman scattering.    Therefore rare-earth doped crystals 

were not Studied further, and attention turned to the Raman spectra of 

pure crystals,  and particularly to the modifications occurring in the 

vicinity of a crystalline phase transition. 

The systems studied included calcium fluoride,  calcium tungstate, 

second order Raman scattering in numerous crystals,  strontium titanate, 
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potassium dinydrogen phosphate and quartz.    The technical results of 

these experiments have been presented in previous reports,  and many 

have been published in the scientific literature.    (See list of publications 

above. ) 

The two major efforts of this project have been the Rai    m 

studies of strontium titanate and quartz in the vicinity of their respec- 

tive phase transitions.    The quartz work which has been the principal 

undertaking durir.g the past two years is covered in detail in the remainder 

of this report. 

HI)   Light Scattering Studies of The Alpha-Beta Phase Transition in Quartz 

This section which completes this report gives a detailed account 

of the quartz work.    The text was prepared by Stephen M. Shapiro and 

^as submitted by him to The Johns Hopkins University in June 1969 in 

a slightly expanded form in partial fulfillment of the requirements for 

the Ph. L>. degree. 



LIGHT SCATTERING STUDIES OF THE ALPHA-BETA 

PHASE TRANSITION IN QUARTZ 

ABSTRACT 

On the basis of early theoretical and experimental investigations 

of the alpha-beta phase transition in crystalline quartz {T = 5730C), 

it has been accepted that the transition is second order, the quartz 

crystal exhibits critical opalescence at the transition temperature, 

and the 207 era-1 Raman active, zone center optic vibration is the soft 

mode responsible for the phase transition. 

We have studied the Raman and Brillouin spectra of crystalline 

quartz from 20oK to 8730K (600oC) with special attention devoted to 

the alpha-beta transition region. 

The Raman spectra of alpha quartz reveal 12 lines of E symmetry 

whereas group theory predicts 8.  Scott and Porto showed that the 

additional lines are due to a lifting of the L0-T0 degeneracies of some 

of the E vibrations. There is little change in the freQueney of the E 

vibrations with increasing temperature. 

ihe A} spectrum of alpha quartz reveals J  lines whereac group theory 

predicts 4. The lowest frequency Ai line appears to play a dominant 

role in the pnase transition since Its frequency decreases from 147 cn~* 

at rooin temperature to 30 cm-1 in the transition region.  At the transi- 

tion temperature this line disappears from our spectra. On cooling 

from the high temperature phase, there is a temperature hysteresis 

since the mode suddenly reappears at a temperature 1 0° lower than the 

temperature at which it disappears on heating.  The frequency of the 
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207 cm-1 line decreases to 162 cm-1 at the transition temperature and 

is still present in the beta phase. Group theory appears to be vio- 

lated in the beta phase since only one Al  vibration is allowed and 

two lines are observed.  Scott attributed the anomalous temperature 

dependence of the 147 cm  and 207 cm-1 excitations to anharmonic 

coupling ot the soft zone center phonon and two zone edge acoustic 

phonons. The extra line in the alpha and beta phases is a second 

order Raman line and does not violate the group theoretical calcula- 

tions which are for q ■= 0. 

Since the frequency of the soft mode does not decrease continu- 

ously toward zero as the transition temperature is approached, the 

"opaleacence" is not due to diverging fluctuations associated with 

the soft optic mode as had been proposed by Ginzburg. 

In the Erillouin scattering experiments, acoustic phonons propa- 

gating in the [100], [010], [001], and [110] directions were studied. 

The various elastic constants measured agreed with the results of 

ultrasonic experiments. For each propagation direction studied, the 

longitudinal acoustic modes exhibited a decrease in frequency of 10 

to 20% on heating the crystal from room temperature to the trar ition 

temperature, and then an abrupt increase. On cooling there is a 

gradual change la the frequency of the phonons.  Since no acoustic 

mode becomes unstabIt at the transition temperature, the observed 

"opalescence" is not due to diverging fluctuations associated with an 

acoustic vibration. 

The temperature hysteresis observed in the Raman and Brillouin 

experiments suggests that quartz undergoes a first order transition 

rather than a second order transition. 
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Observations of the Raylelgh scattered light at the transition 

temperature showed that the large Increase In the elastic scattering 

is due to essentially static inhomogeneities in the index of refrac- 

tion. Two possible sources of the Inhomogeneities are domain 

boundaries between the two members of the Dauphln£ twins coexisting 

in the quartz crystal, or the formation, on heating, of beta quartz 

regions within the alpha quartz crystal. 
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INTRODUCTION 

It has long been known that crystalline quartz undergoes a phase 

transition at 5730C. At this temperature the crystal changes fron the 

low symmetry or alpha phase, belonging to the trigonal system (D3=32), 

to the high symmetry or beta phase, belonging to the hexagonal system 

(Dg=622). Also, at this temperature there are anomalous changes in 

many of the properties of quartz, one of these being the intensity of 

the scattered light. Yakovlev et al observed the spectrally unre- 

solved scattered light and reported an increase in intensity of ^IQr 

over the room temperature scatcered light intensity, and because of 

the appearance of the scattering column under white light illumination 

interpreted this phenomenon as critical opalescence. Ginzburg applied 

Landau's theory of second order phase transitions to quartz and calcu- 

lated the increase in scattered light intensity at the transition 

temperature, obtaining a value which agreed with experiment.  It thus 

appeared that quartz underwent a second order phase transition and 

exhibited critical opalescence at the transition temperature. 

The present investigation explores the temperature dependence of 

the spectral components of the scattered light in an effort to under- 

stand the dynamics of the alpha-beta phase transition and determine the 

cause of the opalescence. 

In Chapter I we study the symmetry and properties of quartz. 

Group theory is used to calculate the normal modes of vibration and the 



displacement and mode correlation charts. The alpha-beta phasi transi- 

tion is discussed and Glnrburg's theory of the quartz transition is 

presented. 

In Chapter II we discuss the Raman scattering experiments performed 

on crystalline quartz. Following a brief Introduction on the classical 

theory of the Raman effect, the past Raman experiments on quartz are 

reviewed. The apparatus used In the present investigation is described, 

and the results of the temperature dependent experiments are presented 

and discussed. 

In Chapter III we discuss the Brillouin scattering experiments 

performed on crystalline quartz. In reviewing the theory of Brillouin 

scattering In solids, we discuss the elastic and photoelastic behavior 

of solids. The past experiments are reviewed and the apparatus used is 

described. The chapter concludes with the results of the Brillouin 

studies. 

In Chapter IV, the Raman and Brillouin experiments in the transition 

temperature region (570oC - 576eC) are reported. In addition, the 

results of the visual observations of the Rayleigh scattering are dis- 

cussed and the probable cause of the "opalescence" is reported. 

Finally, in Chapter V we summarize the results of our light scatter- 

ing invesrigations of quartz. 



CHAPTER I 

CRYSTALLINE QUARTZ: STRUCTURE AND PROPERTIES 

The molecular unit comprising all forms of silica is SiO^. The 

difference between crystalline quartz and the other forms of Silica is 

the particular arrangement of three molecular units to form one unit 

cell. The translation of this cell in three directions in space will 

generate a crystal whose space group is one of the 230 allowed space 

groups. 

Fig. 1-1 shows the six principal phases of silica (1). The name 

quartz applies to that form of silica stable up to 8670C. Alpha, or 

low quartz is the stable modifications of Si02 up to 5730C. At this 

temperature quartz undergoes a transition to the beta, or high quartz 

phase with an increase in the space group symmetry. From 867"C to 

lA"'0eC tridymite is the stable form of Silica. Cristabolite, the 

highest syrijneti.-y form, is stable from 14700C up to the melting point 

of silica« 1723CC. It is possible for the high temperature forms of 

silica to exist at room temperature, but only in a metastable state. 

A well known example is vitreous silica, or fused quartz, which is 

liquid SIO2 cooled under conditions such that it doesn't crystallize. 

A detailed discussion of the various modifications of silica and their 

properties is given by Sosman (1). We report only the light scatter- 

ing axperiments performed on quartz and its alpha-beta transition. 
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The remainder of this section discusses the structure i?nd proper- 

ties of alpha and beta quartz. Group theory is used to cal ulate the 

symmetry of the normal modes of vibration and to infer the directions 

of the atomic displacements in the various modes.  Finally, the cur- 

rently accepted theory of the alpha-beta phase transit-Ion is discussed. 

A.  LOW TEMPERATURE (ALPHA) QUARTZ 

1.  Symmetry 

Alpha, or low quartz is a member of the trigonal crystal system 

and possesses a point symmetry of D3(=32) called the trigonal trapezo- 

hedral (2). The crystals belonging to this point group have a triad 

axis denoted as the Z (or c) axis and three twofold axes in the plane 

perpendicular to Z.  The commonly used set of orthogonal axes estab- 

lished by the. IRE (3) to describe many "^ the physical properties of 

quartz are the triad axis as Z, one of the twofold axes designated as 

X, and Y is defined as pernendicular to Z and X.  Often the X,Y,Z axes 

are referred to as a, b and c.  Many crystallographers use a d±i   .rent 

set of axes to describe quartz:  X and Y are two of the three twofold 

axes making an a^gle of 120° with one another, and Z is the threefold 

axis. 

To understand the features of the structure and the interrelations 

that exist in crystalline quartz, a projection of the crystal structure 

onto the x-y plane, looking down the c axis, is useful.  This projection 

is shown in Fig. 1-2 (A). 

To describe the positions of the silicon and oxygen atoms, four 

parameters ar» needed.  Since each silicon atom Is GiLuated on the two- 

fold X axis, one parameter, u, the distance from the Z axis to the 

silicon atom defines the silicon's position.  This number is a fraction 
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of the lattice parameter in the X direction.  Once one silicon atom Is 

positioned, the others are generated by the symmetry elements.  The 

general position, x,y,z, of one oxygen atom is required, and the rest 

are generated by symmetry,  x and y are given in terms of fractions of 

the lattice parameter a, and the coordinate z is given In ternis of a 

fraction of t'.ie lattice  parameter in the Z direction, c.  It is necessary 

to note that the fractional coordinates of the atoms in alpha quart? are 

given in relation to the crystallographers' set of axes, the n.m-orthogonal 

XYZ system mentioned above.  Appendix A gives the crystallographlc 

information regarding the structure of quartz.  In addition, other prop- 

erties of quartz usefu.' in later discussions are tabulated. 

So far we have limited the discussj-on to the point symmetry, i.e., 

the symmetry described by keeping one point in the unit cell fixed.  This 

allows only rotations, reflections and rotatory reflections.  There are 32 

allowed point groups (5^.  If we allow translations to be combined with 

these 32 point groups, the 230 space groups are generated.  Alpha quartz 

is enantomorphic in that there are two space groups to which alpha quartz 

belongs:  D3(P3221) and D3(P3i21) (2).  The former contains a symmetry 

operation which is a rotation of 120° about Z followed by a translation 

in the Z direction of 2/3 of the cell edge, c.  Another rotation and a 

2/3 translation will bring the atom 1/3 of the way into the next cell. 

Since the cells are identical, if the atom is in one cell it is in all of 

them, so the atom is placed in ths starting cell.  The third operation 

moves the atom to the position corresponding to where it started.  The 

combined operation of a rotation and translation creates a screw axis which 

u 
in this case, is a left handed screw axis.  D3(P3-21) contains a symmetry 

operation which is a 120° rotation followed by a translation of 1/3 the 

cell edge, generating a right handed screw axis. 



The space group D,(P3,21) corresponds to left handtH quartz and 

D-CPSjZl) corresponds Co right handed quartz.  Since quartz is also 

optically active, the names of the different forms tell how the plane of 

polarization is rotated when light travels along the optic axis.  When 

these two enantomorphic forms of quartz exist simultaneously in a crystal 

the crystal Is said to be twinned.  This type of twinning Is* referred to 

as Brazilian, or optical twinning (1).  Since these optical twina rotate 

the plane of polarization in different directions, they can easily be 

detected with crossed polarolds.  Ill our experiments, all samples used 

were free of optical twinning. 

The other major type of twinning, the Dauphine, or electrical, twin 

is less easily detected and, as the name suggests, affects the electrical 

properties of quartz.  The two members of this twin are related bv 180" 

rotation about the Z axis as shown in Figs. I-2a and I-2b.  The space group 

symmetry properties of each type are the same.  Twinning of this type is 

not revealed by optical tests.  However, the X axes (which arf> the electric: 

axes in the two components) are opposed, and if the two types are present 

the piezoelectric effect is diminished.  Etching and electrical measure- 

ments can reveal the existence of Dauphine twinning. 

Several authors have studied electrical twins in quartz crystals with 

regard to their motion, creation and reduction (i, 6, 7).  iiie general 

result from these studies is that this type of twinning is extremely 

difficult to control.  More was learned about putting Dauphin^ twinning 

into quartz than removing it! 

Dauphintf twinning occurs naturally and can be produced readily at 

room temperature by a small mechanical shock.  River quartz is exten- 

sively twinned at the surface as a result of being tumbled in the strcapi. 

It is most likely that .n the cutting r.nd polishing of cur crystals we 

changed any pre-existing twins and introduced new ones. 



The strategy frequently employed for removing Dauphin^ twins Is 

to heat quartz well above the alpha-beta transition temperature where 

the twinned crystal becor/"s homogencou«, and then control the cooling 

rate so that twinning dees not reappear at lower temperatures (6). 

The amount of twinning produced is influenced by the rate of cooling 

through the transition temperature, the size of the sample and the 

original distribution of the twinning.  Frondel found that slow cool- 

ing tends to increase the amount of twinning produced and decrease 

the amount of cracking (6).  He found that inversion twinning always 

occurred in plates of quartz over 1 mm. thick regardless of the cool- 

ing conditions.  He also found that when quartz is heated above the 

transition temperature, the crystal retains a memory of what twin It 

was while in its low temperature phase. This was observed in experi- 

ments where quartz was cooled from the beta phase; the crystal was 

more likely to go back into the same form which it possessed before- 

heating rather than to tha  other form of the twin.  This xs apparently 

due to the strains being created and persisting 4n the «ample when thp 

twinning is lost.  Heating the quartz 100oC above tho transition 

temperature does not erase the memory. 

Since there are two possible equilibrium positions available for 

each atom in the alpha phase of quartz (Fig. I-2a and I-2b) correspond- 

ing to the two vpv.phinä  twins, and since electrical twinning should 

disappear on heating above the transition temperature, the concept of 

electrical twinning appears to be an important consideration in under- 

standing the phase transition. 
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In our experiments  twinning went uncontrolled.  However, the 

reproducihllity of the data within a temperature run where the transi- 

tion region was traversed several times  indicates that either the 

twinning was changing in the same way each time, or was not affecting 

the properties being measured. 

In the types of twins described above, the Z axis Is constant in 

direction throughout the crystal. Many more types of twins are 

possible involving variation of the orientation of the Z axis but none 

are frequent among naturai crystals (1).  The best known of these is 

the Japanese twin, its two parts being symmetrical with respect to one 

of the trigonal bipyramid faces so that the Z axes in the two twins 

meet at an angle of 10Ao.  These types of twins can be detected by 

inspection.  Crystals used in our experiments were observed to be free 

of such twinning. 

2. Properties 

The two properties which have led to extensive studies of quartz 

are piezoelectricity and optical activity. 

Piezoelectricity can be precisely defined as "the electric polari- 

zation produced by mechanical strain in crystals belonging to certain 

classes, the polarization being proportional to the strain and changim; 

sign with it.  This is the direct effect.  In the converse effyct, a 

piezoelectric crystal becomes strained when electrically polarized by 

an amount proportional to the polarizing field"(8). 

We can express this statement in mathematical terms: 



n 

Direct  effect; 

h t',   hin 
x 

m=l 

6 
or    P.    =    I  d.u  X 

n L-,   hm 

Converse effect. 

,   m 

3 

m  , '-, hm h 
h=l 

m  ,L-,   hm h 
h-l 

where the quantities are defined:  E, is the electric field, P, the 
h 1) 

polarization, x  the strain, and X  the stress.  The third rank tensor 
tu m 

quantities, d,  and e.  are the piezoelectric strain and stress constants 
hm     hm        r 

respectively.  h can take on values 1, 2, or 3 and m= 1, 2, 3, A, 5, or 

6.  The subscripts are in their reduced form where pairs of subscripts 

have been replaced by a single subscript, i.e. (9): 

(1  2  3  4  5  6} 

rll  22  33  23  13  12, 
for \ 32  31  21j 

From chc matrix of the piezoelectric constants (Appendix A) an X 

or Y compressive or tensile stress in alpha quartz can produce polari- 

zation in the X direction only.  The sign of the polarization depends 

on the sign of the stress (tension or compression).  The X axis is thus 

polar and is called the electric axis.  For right handed quartz the 

plus direction is defined as having a positive charge on compression. 
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A shear stress can produce a polarization in the r.  or y directions. 

Since the bottom row of the matrix representation or the piezoelectric 

tensor contains all zeros no possible stress can produce a polariza- 

tion along the triad axis. 

Quartz is probably the most widely used piezoelectric crystal 

although the effect is smaller than thai in some other crystals such 

as Rochelle Salt and KDP (8).  The reasons, for the widespread use of 

quartz are its abundance, chemical stability, hardn-css and the ability 

to cut and polish quartz Into any shape. 

The optical rotatory power of quartz is 18.5 angular degrees/mm. 

near 6328 A.  As mentioned above, right and left handed quartz will 

rotate the plane of vibration of the E vector of a plane polarized light 

beam travelling along the optic axis in opposite directions.  The con- 

vention used 16 the following;  right handed rotation is a rotation of 

the electric vector in a clockwise direction looking against the 

oncoming light.  Left handed quartz rotates the vibration plane counter- 

clockwise (10). 

In most of our experiments, efforts were made to avoid sending 

light along the optic axis due to the difficulty in polarization assign- 

ments and intensity measurements.  Only in the case where a Z phonon 

was being studied was the optic axis in the scattering ^lane.  In all 

other experiments, the scattering plane was the x-y plane and the 

effects of optical activity were avoided. 
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B.  HIGH TEMPERATURE (BCTA) QUARTZ 

When quartz is heated above 5730C into its high temperature or 

beta phase, the symmetry of the crystal changes (1).  Beta quartz 

belongs to the hexagonal crystal system with point symmetry D (622) (2;. 

Beta quartz is still enantomorphic, DVPS 22) and D^(P6|22), and has 5   2 6   4 

the sane hellcity as the lower tt rf5rature form, i.e., the handedness 

is preserved. Fig.l-2c shows thd basal plant 'x-y) projection of the 

oxygen and silicon atoms. By 

looking at the special hexagonal unit cell, we see that in order to 

form the 6 fold axis from the low temperaturt phase the silicons must 

move along the two-fold axes to the vertices of the hexagon.  The 

oxygens move nearly perpendicular to the SI - 0 - Si plane to positions 

equidistant from the silicons.  Thus, in addition to the new six-fold 

rotation symmetry, a new two-fold symmetry axis lying in the basal 

plane connecting opposite oxygens is also created. 

Because of the higher symmetry of beta qusruz, there is only one 

positional parameter to be determined. This is the x coordinate of one 

oxygen. The other coordinates are related to this coordinate by sym- 

metry as shown in Appendix A. Since the silicons occupy the vertices 

of the hexagon, their x,y,z positions are given in terms of small 

integer fractions of the lattice parameters a and c. Appendix A gives 

the fractional coordinates for beta quartz, along with other physical 

properties and constants. 

(■'Ig. 1-2 shows the relationship of beta quartz to the two Dauphin^ 

twins of alpha quartz.  We see that the atomic po.si lions In the beta 

quartz are the average atomic positions of the two Dauphin^ twins of 



alpha quartz. 

Since the atomic positions In the beta phase occupy tlio mean 

position of the alpha twins, one would expect Dauphine twinning to 

disappear on passing into the high temperature phase.  This is also 

expected since tne piezoelectric coefficient d.. goes to ztMO as 
i. i 

the transition temperature is approiicheJ and is sere in the beta 

phase. Thus, because of ttie higher syntmetry, the polarity of the X 

axis has disappeared.  This is observed, but, as mentioned above, im 

cooling the crystal "remembers" its twin form due to strains persist- 

ing in the high temperature phase (11). 

C.  NORMAL MODE ANALYSIS OF QUARTZ 

In a crystalline solid containing N atoms, there are a total of 

3N vibrational motions since each atom has 3 translatioual decrees of 

freedoi!'.  For macroscopic samples, N is a very large number and there 

is an extremely large number of modes.  The problem of calculating 

the properties of these modes is reduced to manageable proportions when 

the tt .nslational symmetry of the solid is taken into account.  Trans- 

latJonal symmetry means that there exist basis vectors such that the 

crystal structure remains invariant under translation through any vecto; 

which is the sum of integral multiples of the basis vectors.  The 

physical arrangement ol the whole crystal can be defined Li we specify 
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the contents of a single unit cell.  The macroscopic crystal is 

generated by repeated translations of this unit cell in directions 

defined by the basis vectors.  Since all unit cells are equivalent it 

is sufficient to consider the motions of the atoms in one unit cell. 

If there are n atoms in a primitive unit cell, there will be 3n 

branches of the dispersion curve, frequency of vibration Ü  vs 

momentum q.  (In the trigonal and hexagonal crystal systems, corre- 

sponding to alpha and beta quartz, the unit cells are primitive.)  A 

typical dispersion curve is shown in Fig. 1-3.  The three branches 

with ft *■ 0 as q ■*■ C are the acoustic branches and the remaining 3n-3 

branches are the optic branches.  In the dispersion curve, q can take 

on values from 0 to ■t108cm~li.  For those modes that produce light 

scattering, q is on the order of 105cm-1, which is small compared to 

ft     1 
10 cm-1.  Thus the approximation q - 0 is made and in the following 

discussion the term "modes" refers to the 3n modes- of vibration with 

q ^ 0 

If the interatomic forces are known, the vibrational modes can be 

completely determined.  One sets up the dynamical matrix which is the 

matrix of the coefficients of the quadratic term of the potential 

energy expansion in terms of particle displacement coordinates.  From 

this matrix the eigenvalues can be computed.  A new set of coordinates 

are defined which are linear combinations of the displacement coordi- 

nates.  If the transformation matrix.which defines otir new coordinates^ 

simultaneously diagonalizes the kinetic and potential energies, then 

the new coordinates are called the normal coordinates.  Tn terms of 

these coordinates, the Hamiltonian has the form of a sum of simple 



in 

Fig. 1-3.  A typical dispersion curve for lattice vibrations. 

fi is the frequency of the lattice modes and q in  the wave vector 

(proportional to momentum).  The 3 branches for which ü -+- 0 as 

q * 0 are the acoustic branches and the remaining branches are the 

optic branches. 



17 

harmonic oscillator Hamiltonians where the kinetic and potential 

energies are sums of squares only, without any cross terras.  Each 

normal coordinate corresponds to a vibration of the system with only 

one frequency.  These oscillations are spoken of as the normal modes 

of vibration (12). 

For quartz, there are 9 atoms in a unit cell and 27 normal modes. 

Although the interatomic forces are not Vnown, they may be estimated 

on the basis of a model.  The calculation, though cumbersome, is pos- 

sible.  On the basis of a valence force model Kleinman and Spitzer 

calculated the atomic motions aud frequencies for the eighc nondegen- 

erate modes of vibration of alpha quartz (13). 

Since the potential energy function is invariant under the symmetry 

operations of the full space group of the lattice, restrictions are 

imposed on the form of the potential and, thus, on the normal coordi- 

nates.  The normal coordinates will possess certain transformation 

properties which can be determined by group theory.  We can also 

determine the atomic displacement directions which occur for each 

normal vibration.  In addition, the correlation between the normal 

nodes in alpha and beta quartz can be determined.  Group theory, how- 

ever, cannot yield values for the normal coordinates or the frequencies. 

These can be found only when the interatomic forces are known. 

Because of the translational symmetry and our q«0 assumption it is 

sufficient to consider the crystal point groups.  The collection of 

symmetry operations which leave a crystal invariant, and one point 

fixed, form a group which is one of the 32 crystal poiit groups.  Each 

element of the group can be represented by a matrix and the collection 
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of matrices form a representation of th» group.  The elements of a 

grcup divide into classes.  The invariant quantity for equivctlent 

represen'. ^itions of a class is the character, or tracejOf the represen- 

tation.  A representation caa be reduced if a similarity transforma- 

tion can be found which puts the representation into block form along 

the diagonal.  If this cannot be done, the representation is said to 

be irreducible.  For each point group the number of irreducible 

representations equals the number ol classes (14). 

The invars ice of ehe potential energy under the symmetry opera- 

tions of the group imj-lies the invariance of the square of a single, 

nondegenerate normal coordinate, or the invariance of a linear combina- 

tion of the squares of p normal coordinates which have the same 

frequency.  The former corresponds to a one dimensional representation 

and the latter to a p dimensional irreducible represti.tation.  In 

general, a frequency is p fold degenerate if the corresponding normal 

coordinates transform according to a p dimensional irreducible repre- 

sentation. 

The characters for the irreducible representations of the 32 

different point groups h^ve been tabulated (14).  Table 1-1 gives the 

character tables for alpha quartz (D3) and beta quartz (D^).  These 

tables show, in addition to the characters of the different classes, 

the transformation pr^p^-ties of the orthogonal coordinates (x,y,z) 

and various bilinear forms.  These are useful in deriving the ..election 

rules for Ranan and Infrared activity.  The character table for alpha 

quartz (D3) gives the characters for the three classes:  the identity 

element, E; the two possible 1208 rotations about the threefold axis, 
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Table 1-1 

Character Tables 

Alpha Quartz 

»3(32) E 2C3 3C2 

x2 + y2^ Al 1 1 1 

z A2 1 1 -1 

(xz.yz) 

(x2 - y-^xy) 
(x,y) E 2 -1 0 

Beta Quartz 

D6(622) E C2 2C3 2C6 3C2 3cr 

x2 + y2,z2 Ai 1 1 1 1 1 1 

z A2 1 i 1 1 -] -1 

Bi I -1 1 -1 1 -1 

Be 1 -1 J -1 -1 1 

(xz.yz) (x.y) El 2 -2 -1 1 0 0 

(x2 - y2,xy) E2 2 2 -1 -1 0 0 
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2C3; and 180° rotation about the three twofold axes In the x-y plane, 

3C2.  The irreducible representations are: A^, a totally symmetric, 

one dimensional representation in which the displacements of the atoms 

are invariant under all operations in the group; A^r a one dimensional 

representation in which the displacements are symmetric with respect 

to the threefold rotation, but antisymmetric with respect to the two- 

fold fixes; E, a doubly degenerate, two dimensional representation where 

the displacements are antisymmetric under C3 and unsymmetric under C2- 

There are two irethods which can be used to find the number of 

vibrations of each irreducible representation (or species) for a given 

solid with a given symmetry.  One method involves the consideration of 

the individual molecules within the crystal and is called the site 

method (15).  The method we will employ is the unit cell analysis of 

Bhagavantum and Venkatarayudu (16).  In this method all the atoms in 

the unit cell are considered. 

We consider an arbitrary displacement of the atoms in a unit cell. 

The collection of matrices representing the transformation properties 

of an arbitrary displacement of all the atoms in the unit cell under 

the symmetry operations of the group is called the total representation. 

In quartz the total representation is a collection of 27 dimensional 

matrices. 

It can be shown that only those nuclei which remain fixed, or are 

moved to an equivalent position, under the symmetry elements of the 

group contribute to the characters of the total representation 

matrices (14).  For a rotation by an angle 9, each atom that is trans- 

formed into itself, or an equivalent one, contributes (1 + 2cose) to 

the character. 
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For the classes in alpha quartz (D3): 

X'(E) x'(c3) x'CCj) 

3 0 -1 

where \'(o)   is  the contribution to the total character for one atoin. 

For the class is in beta quartz (De): 

X'(E) x'(c2) x'(c3) x'(c6) x'(c'2) x'Ccp 

3 -1 0 0 -1 -1 

It is now necessary to determine how many atoms are unchanged under 

the operations of each class.  We will use the hexagonal cells in 

Figs. 1-2        and cyclic notation (i.e. (123) means atom 1 is moved 

to position of atom 2, 2 to 3 and 3 to 1; no atom is unchanged): 

Alpha quartz (D3) 

Number 
Unchanged 

0 
0 

] 
1 
1 

Ciciss Atoms 

E (1) (2) (3) (A) (5) (6) (7) (8) (9) 

C3 (123)(468)(579) 
(132)(486)(597; 

C?' (1) (23) (49) (58) (67) 
(2)(13)(56)(47)(98) 
(3)(12)(45)(96)(87) 

Thus the chavacters of the total representation xT(
G) for the 

symmetry operations of alpha quartz with 9 atoms in a unit cell: 

XT(E) 

9 x 3 = 27 

XT(C3) 

0x0 = 0 

XT(C2) 

1 x(-l) - -1 
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Doing the saiste for beta quartz with symmetry D6: (primed atoms 

are equivalent to unprimed atoms and each primed and unprimed pair 

is counted once) 

Beta quartz (D.) 

Class 

E 

C2(||z) 

Cadiz) 

CeCllz) 

czdix) 

Cltlly) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

(11')(22')(33')(47)(58) (69) 

(123)(468)(579) 
(132)(486)(597) 

(13'21'32')(456789) 
(12'31'23')(987654) 

(3) (3') (45) (96) (87) 
(!)(!')(49)(58)(67) 
(2)(2')(47)(56)(98) 

(8)(5)(3'2)(11')(2'3) 
(4)(7)(31')(22')(3'2) 
(6)(9)(12')(33')(21') 

Numbe r 
Unchanged 

9 

3 

0 
0 

0 
0 

1 
1 
1 

3 
3 
3 

XT(E) xT(c2) xT(c3) xT(c6) xT(c^) xT(Q         | 

9x3 - 27 3x(-l)  - -3 0 0 lx(-l)  - -1 3x(-l)  = -3 

An arbitrary displacement of the atoms in a unit cell can be written 

as a linear combination of the normal coordinates.  The total represen- 

tation is a linear combination of the irreducible representations. In 

terms of the characters, the standard reduction formula is (14): 

XT(o) - I  cVCo) 
i 

(1-1) 
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where XT(
0) is the character for the total representations fcr element a. 

X (a) is the character of the i  Irreducible representation of ele- 

ment a and c  is the number of times that irreducible representaticn 

appears in the reduction of the total representation.  To find c. we 

multiply both sides of (1-1) by h x (ö) (where h  is the number of ele- 
o o 

meats In each class)j sum both sides over c and apply the orthogonality 

condition (14), 

I h xi(a)xj(o) = g6 (1-2) 
o  ' J 

where g ir. the number of elements in group. 

The result is 

I I  hoXT(o)x
i(a)  =  C. (1-3) 

u 

Applying (.r-3) to reduce the total representations found above: 

Alpha quartz (D3): 

C,  = 1/6 [1x27x1 + 0 + 3x(-l)xl]  = 4 
Al 

C.  = 1/6 [1x27x1 + 0 + 3x(-l)x(-l)]  = 3 A2 

CE    =  1/6   [1x27x2 +0+0)     =    9 

Beta  q,uartz   (De): 

C.  = 1/12 [1x27x1 + lx(-3)xl + 0 + 0 + 3x(-l)xl + 3x(-3)xl) A 
1 

C^ = 1/12 [1x27x1 + lx(-3)xl + 0 + 0 + 3x(-l)x(-l) 

+ 3x(-3)x(-l)]  =  3 
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C,. - 1/12 [1x27x1 + lx(-3)x(-l) + 0 + 0 + 3x(-l)xl 

+ 3x(-3)x(-l)]  = 3 

CB = 1/12 [1x27x1 + lx(-3)x(-l) + C + 0 + 3x(-l)x(-l) 

+ 3x(-3)x(l)] -    2 

Cv    -    1/12  [1x27x2 + lx(-3)x(-2)  +0+0+0+0]     -    5 
«H 

C_    -    1/12  [1x27x2 + lx(-3)x2 +0+0+0+01=    A 

Thus the number of each species for alpha and beta quartz is: 

Alpha:    bki  + 5A2 + 9E 

Beta:     lAi + 3A2 + 3Bi + 2B2 + 5Ei + 4E2 

(Since the E modes are doubly degenerate, while the A and B modes are 

non-degenerate, the number of "degrees of freedom" in either phase is 

27.) 

To find the number of optic modes we have to subtract the three 

acoustic modes from the total number. Acoustic modes are a result of a 

translation of the entire unit cell. Thus the acoustic modes will 

transform as the coordinates x, y, and z (1A). From the character 

tables we see that for D3, x, y and z transform as E + A2; and in Dg, 

x, y and z transform as E^ + A2. Thus the optic modes are: 

Alpha quartz:  AAi + 5A2 + 9E - (E + A2) 

4Ai + AA2 + 8E 

Beta quartz :  Ai + 3A2 + 3B! + 2B2 + SEi  + AEg - (E! + A2) 

:   Ai + 2A2 + 3Bi + 2B2 + AEi + AE2 
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1.  Displacement Correlation Charts 

The displacement directions of the atoms in each of the normal 

modes can be determined once the transformation properties of the 

normal modes are known.  This determination is made by comparing the 

characters of the irreducible representations of the symmetry group 

at the site of each atom (called the site group) with the characters 

of the irreducible representation of the point group of the lattice (17) 

Since each site group must be a subgroup of the lattice  .^nt group, 

each site group will have symmetry elements (i.e. classes) in common 

with the point group.  For each one dimensional representation of the 

point group of th  ; ;i;tice we can find a one dimensional representation 

of the site group, such that the characters for the classes in common 

will be equal.  By inspection of the character table we can determine 

which particular one dimensional representation of the lattice point 

group and the site group have the same characters.  For each p (p > 3) 

dimensional irreducible representation of the lattice point group, we 

can find either i) a single p dimensional irreducible representation 

of the site group, or ii) a linear combination of m (m < p) dimensional 

irreducible representations of the site group such that the characters 

for the common classes will be equal.  Again, by inspection of the 

character tables, the correlation between the p dimensional irreducible 

representation of the lattice point group and the irreducible repreren- 

tations of the site group can readily be determined.  In constructing 

the displacement correlation chart (Table 1-2) , the above correlations 

between the irreducible representations of the lattice point group and 

the site groups are represented by straight lines. 
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If a given species of vibration of the lattice is correlated with 

an irreducible representation of the site group which transforms as a 

component of a vector (x, y, or z), then motion of the atom is allowed 

in that vector component direction.  If the lattice vibration is cor- 

related with an irreducible representation of the site group which does 

not transform as any component of a vector, then the atom cannot move. 

The above discussion is now applied to quartz.  Table 1-2 shows 

the displacement correlation chart for alpha and beta quartz.  In 

alpha quartz the site symmetry of the oxygens is Ci(the identity group) 

and the site symmetry of the silicons is C2 (2, 18). Next to the irre- 

ducible representations of the site group are the vector components 

which transform according to that particular representation. From this 

chart we see that in all the normal modes of the lattice, the direction 

of motion of the oxygens is not restricted. For the Aj modes, the 

motion of the silicons is limited to the x-y plane while for A2 and E 

modes, the displacement directions of the silicons are not restricted. 

These conclusions agree with Kleinman and Spitzer's valence force model 

calculations of the atomic motions associated with the A^ and A^ modes 

(13). Figs, I-4a-4d are xy projections of the calculated particle dis- 

placements for the 4 Aj modes and show our measured frequencies at 

room temperature.  In the 4 A^ modes, the z component of the silicon 

atoms is zero. 

In the correlation chart for beta quartz the site symmetry of the 

oxygens is C2 and of the silicons is D2. We see that in the A^ mode 

of vibration the silicons cannot move and the oxygens move only in the 

x-y plane.  In the B^ modes the silicons move only in the x-y plane and 
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207 cm- 355 cm-1 

\ 

f 
466 cm-' (e) 1081 cm-" 

a- ß 
Fig. 1-4.  (a-d) Atomic displacements in the x~y plane for the 

four Ai vibrations based on the calculations of Kleinman and Spitzer (13). 
The numbers are our measured values of the room temperature frequencies, 
(e) The atomic displacements necessary to change from alpha to beta quartz. 
These are most closely approximated by the 207 cm"1 vibration. 
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the oxygen motion Is unrestricted.  In the Ej and E2 modes there are 

no restrictions on the directions of atomic motion. 

2. Mode Correlation Chart 

Another type of correlation chart relates the normal modes of  the 

high and low temperature phases. This chart has physical significance 

only when the fractional changes in the normal coordinates and frequencies 

which occur at the transition are very small. Under this condition the 

transformation properties of the vibrations in the two phases are 

related. This is the case for second order transitions where the normal 

coordinates and frequencies change continuous Ly as the transition 

region is traversed.  (In fact the Landau theory is based on the con- 

tinuous change of state of the crystal (19)).  If the transition is 

first order, where there may be a large, discontinuous change in tlvi 

interatomic forces in going from the high phase to the low phase, there 

can be a large mixing of the different normal coordinates in the low 

temperature phase. Because of this mixing there may be no correlation 

of a normal vibration in the high temperature phase with a particular 

normal vibration in the low temperature phase. 

For quartz, the evidence suggests that the transition it first 

order (20). However, from Young's measurements of atomic j sltlons as 

a function of temperature, we conclude that any discontinuous change in 

the normal coordinates is small.  Thus the symmetry properties of the 

normal vibrations of the two phases will be closely related and we can 

construct a meaningful mode correlation chart. 



30 

Since the lattice point group of alpha quartz is a subgroup of the 

point group cf beta quartz, there will be classes in common.  We deter- 

mine., from the character tables, which irreducible representations of 

alpha ano beta quartz have equal characters for classes in common. 

The result is shown in Table 1-3.  The underlined species are the 

irreducible representatioua whose associated modes are Raman active. 

The 8 doubly degeierate Raman active E modes of alpha quartz become 

4 Ej modes (Raman and infrared active) and 4 E2 modes (Raman active 

and infrared inactive) in the B phase- The 4 A2 modes (Raman inactive, 

Infrared active) become 2 A2 modes (Raman Inactive, infrared active) 

and 2 B2 modes (Raman and Infrared inactive). Of the four totally 

symmetric, Raman active Aj modes (room temperature frequencies:  207, 

355, 466 and 1081 cm-1 (21, 22»only one is Raman active in the beta 

ph-'-.e.  The remaining three become Raman and infrared inactive Bj modes. 

From the mode and displacement correlation charts, we can infer 

to which species the transition mode belongs. 

Xn order to change from the beta to the alpha phase, the 

silicons move in the x-y plane only:  the z coordinates remain 

C20) 
unchanged. Fror the displacemrnt correlation chart for alpha quartz 

(Table I-2a) we see that all three species of vibration allow motion 

in the x-y plane and in the A2 and E vibrations the silicon atoms can 

also move In the z direction.  In the beta to alpha transition the 

silicons again move only in the x-y plane. From the beta quartz cor- 

relation chart (Table I-2b) this can be a B?, Ej, or Bj vibration. 

Thus the mode associated with the transition is an Aj, A2, or E mode 

of alpha quartz which, from Table 1-3, becomes a Bi, B2 or Ej mode, 

respectively, of beta quartz. 



TABLE     1-3 

QUARTZ 

207 
355 
466 
1081 

ß 

8E -4E. 
4E, 
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This is as far as group theory can go. To gain more information 

about which is the transition mode, one relies on experiments or calcu- 

lations  Kleinman and Spitzer's calculation of the particle displace- 

ments in the A2 vibrations ^how -hat the silicons move in the 2 

direction (13). Thus the A2 species in alpha quartz (B2 in beta quartz) 

do not contain the transition mode.  The transition mode is of either 

Ai or E species of alpha quartz. Again, appealing to the Kleinman 

and Spitzer calculation of the particle displacements for the Ai vibra- 

tions we see that the 207 cm"1 vibration most closely resembles the atomic 

motions necessary to change alpha quartz into beta quartz (13) (compare 

Figs. 1-4a with 1-4e).  The assignmtüt ol the 207 cirr- vibration as the 

transition mode agrees with the experimental observations (?3) where 

the properties of the 207 cm-1 vibration possess a strong temperature 

''-pfendence, which is what one would expect of a transition mode.  (Other 

complications are introduced due to a coupling of the 207 cm-1, q=»0 

obonon with two q^O phonons. This will be discussed in the next chap- 

ter.) 

D.  THE ALPHA-BETA TRANSITION OF QUARTZ 

The transition between alpha and beta quartz at atmospheric pressure 

occurs at 573 * 10C (1). Within 50 C0 of this temperature many ~f the 

physical properties of quartz show a strong temperature dependence. 

Among these are the specific heat (24), molar volume (25), coefficient 

of thermal expansion (26), piezoelectric coefficients (27) and elastic 

constants(28). The most extensive study of quartz done in recent 

years was an X-ray analysis of the transition by Young, who medsured 
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the fractional roordinates of the atomic positions (see Ch. 1, Sec. A, 

and Appendix A) at several temperatures from room teiapiraiure up to 

650oC (20). 

As we shall demonstrate shortly, discontinuities in some cr the 

properties f quartz are expected in the transition region (19).  To 

study these discontinuities requires high temperature resolution.  The 

relative temperature resolution in the above experiments was never 

better than 2 Cs and many of the experiments were performed with the 

temperature changing. Under these conditions it was impossible to 

study effects occurring within 1 C0 of the transition and any discon- 

tinuity occurring veiy near the transition temperature would not be 

observed. 

The stomlc motions which result in a change from D3 to D^, symmetry 

can be determined from a study of tho special '.exagonal cells of alpha 

and beta quartz (Figs. 1-2/ T.e silicons move along the two- 

fold (X) axes to occupy positions on tne vertices of the hexagon.  This 

creates a new sixfold rotation axis. Each silicon is now shared by 

two unit cells.  At the same time each oxygen within a sector moves to 

occupy a position equidistant f^om neighboring silicons which lead^ 

to the creation of aaaitional twofold axes in the x-y plane. 

A conceptual picture of the atomic motions during the trarsition 

is given by studying the SiOi. tetrahedr^.  Alpha and beta quartz aie 

built up of SiO^ tetrah^dra joined at ail corners.  fhe transition can 

be pictured as a rearrangement of the oxygens about the silicon to form 

a regular tetrahedron. Conversely, we describe the 

transition beta to alpha, as a "puckering" of the SiOu tetrahedra from 
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the regular arrangement of the oxygens in the beta phase to t'c 

distorted shape in ehe alpha phase.  This picture is useful If one 

wants to conspare quartz with the fir^t >rJer transition in ferro- 

electric SaTiOa (29). 

Ano'cver pinture of the transition is obtained by considering the 

electrical twins of alpha quartz. This leads to a definition of an 

order parameter to describe the transition. From Fig. 1-2 we see that 

the average atomic positionr in the beta phase lie midway between the 

two alpha phase equilibrium positions. Thus the motions of the atoms 

will be along the lines connecting the atomic positions in the two 

twins of quartz. Two parameters, one for the silicons and one for the 

oxygens, define these motions.  In terms of fractional coordinates and 

lattice vectors they ars: 

■►     * O     *  g      ,1        .  •*■ /T,\ 
Y " rsi ' rsi ^2 - Pl a (1-4a) 

which is motion along the X axis, and: 

^ - 'ox - 'ox" l(v V + K- !e>2 + (v !6> ^- vr* + 
(z - « ) " (I-Ab) 

which is motion essentially in the y-z plane.  Since the X parameters in 

the alpha and beta phases are very nearly the same, there is little 

change in the X direction of the oxygen atoms,  y and 6 are positive 

if the vector points toward the aj position of the atom and negative 

if toward the 02 position (Fig. 1-2). Thus the sign of y or &  will 

determine which twin the crystal belongs to.  It is also seen (by 

definition) that the value of y  and Ö will be zero in the high 
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temperature phase.  Thus, y or 6 will serve as an order parameter In a 

phenomenological description of the transition.  They can have either 

sign below the tramiition, go to zero continuously or discontinuously 

at the transition temperature,and are zero above thf^ transition 

temperature.  The temperature dependence of these quantities, calculated 

from Young's data, is shown in Fig, 1-5 (20). 

Landau presented a phenomenological description of second order 

phase transitions (19).  He expanded the thermodynamlc potential, *, in 

terms of powers of the order parameter n: 

*(n) - 4» + An + an2 + Bn3 + ^n1* + Cn5 + rt»6 + 
o 2. b (1-5) 

The coefficients are assumed to be functions of temperature and stress. 

From the equilibrium conditions 

m. -o > ihp > o 

certain restrictions are impc jed on the coefficients: 

i) A=0 to satisfy the equilibrium condition (dS'/Bn)  = 0 for n = 0 

at any temperature in the high temperature phase 

ii) a; In the symmetric, high temperature phase the minimum of * 

corresponds to n"0.  This requires a>0.  In the low temperature 

phase the equilibrium state corresponds to n ^=0.  This requires 
o 

a<0.  Thus a is assumed to have the temperature dependence 

a^a1(T-T ) where T is the transition temperature. 

iii) b=0, to insure the existence of a minimum of * at the transition 

temperature. 
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iv) b; In a second order transition (the type that Landau studied) 

b>0.  In a first order transition b<0.  b=>0 c or re i ponds to a 

transition at the Curie critical point (19). 

v) C; We assume 00.  If C wert: different from zero the thermo- 

dynamic potential associated with one value of the order 

parameter in the low temperature phase (either +n or -n) would 

be lower than the energy associated with the other value. 

vi) c>0 to satisfy the equilibrium condition (?2*/3n2) > 0 for 
o 

large values of n. 

The thermodynamic potential is rewritten: 

$(n) = *0 + an
2 + \^  + |n6 (1-6) 

The coefficients are related to measurable quantities. Their physical 

significance depends on the system being studied.  For example:  in a 

ferroelectric transition, a  is proportional to the dielectric suscep- 

tibility; in a magnetic transition a  is proportional to the magnetic 

susceptibility; in a liquid, a  is proportional to the compressibility 

(30). 

The thermodynamic potential, *(n)» is plotted in Fig. 1-6.  The 

double minimum in the low temperature phase corresponds to the two 

equilibrium values of the order parameter (±n).  The single minimum in 

the high temperature phase corresponds to n=0. 

The phenotnenological description of the transition involves deter- 

mining how the double well in the low temperature phase changes into 

the single well as the temperature is increased.  If b>0, we have a 



•jK 

$(•»7) 

Fig. 1-6. Thermodynamic potential, 4(n) vs the order parameter, n, 

for the low temperature phase, T << T , and the high temperature phase, 

T >> T . 
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second order transition.  The first derivatives of $ are  continuous, 

but the second derivatives (e.g. specific heat) contain singularities 

or discontinuities. The barrier height will decrease as T -* T ; and 

at T the well has a flat bottom. The mean value of the order parameter 

at this temperature is zero,  but the fluctuations about the mean can 

be very large. Above T there is a single well vith a minimum at 

0-0. 

If b<0 we have a first order transition and the first derivatives 

of ♦ (e.g. volume and entropy) have discontinuities.  As the temperature 

is Increased, a third well appears at n^O at a temperature below T . 

This allows a metastable state of the high temperature phase to coexist 

with the stable low temperature phase. At T there are three equal 

minima. As T Is Increased further, the central well becomes deeper and 

the high temperature phase can exist only as a metastable state. Finally, 

when T is sufficiently large, only one central minimum exists. The fp.ct 

that in a first order phase transition near the transition temperature, 

both phases can exist simultaneously in the crystal leads to a possible 

temperature hyfiteresis in the observed properties. This is one of the 

distinctions between first and second order transitions. 

Since the coefficients of the expansion of *(n) are functions of 

stress and temperature, there may exist a particular value of the stress 

and temperature such that both a and b equal zero. On a stress vs 

temperatur» plot, this point is called the Curie critical point.  It is 

the point where a line of first order phase transitions meets the line, 

of second or.Ier phase transitions (19). The curves ♦(n) vs n for b=0 for 

different temperatures are similar to those for an ordinary second order 



transition discussed above (b>0) except for ba0 th?  well is flatter at 

T since the lowest non-vanishing term for 'Kn) is proportional to n6. 

Ginzburg and Levanyuk (31) applied Landau's theory of second order 

phase transitions to the alpha-beta quartz transition.  They applied 

the equilibrium conditions to eq. (1-6) and found the equilibrium 

values of the order parameter. 

The linear temperature dependence of a was assumed: 

a " a'(T - Tt) (1-7) 

The equilibrium conditions yield values of n : 

n  - 0 T > T     (I-8a) 
o t 

n * - ' rb^.-2ac)i-  T <     (I.8b) 
0 c 

The solution (I-8a) n -0 is for T>T ; and the solution (l-8b) n ^=0 con- 

tains the two values of n associated with the different twins for 
o 

T<T . At the transition temperature (T^T ) the order parameter equals 

zero since a=0. 

It is possible that singularities at the transition temperature in 

the derivatives of  $(n) exist.  Because of these singularities the 

function $(»|) is not analytic at T and Tor this reason, the Landau 

theory breaks down very close to the critical point (32). 

Ginzburg's treatment of the alpha-beta phase transition predicted 

an anomalous increase in the intensity of the scattered light at the 

transition temperature. As is well knoxm, fluctuations in the dielectric 

constant, Ae, scatter light. These fluctuations can be written as a 
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function of the fluctuations in the order parameter.  (The dielectric 

constant is also a function of the strain (x) and entropy (S) whose 

mean square fluctuations are proportional to the Brillouin and Rayieigh 

scattered intensities, respectively): 

3n X.S 

Glnzburg's selection of n^ instead of n is an essential factor in 

his argument (31). With the choice of n2 we will show that opalescence 

will be observed only at the Curie critical point. 

Continuing wich Glnzburg's argument, we have near the transition 

temperature in the lower temperature phase 

Ae - (-—]  2n0&n (1-10) 
3n X.S 

The intensity of the scattered light is proportional to the mean square 

fluctuations of the dielectric constant: 

I -v- (Ä^") = f-ii-)2 An 2(An)2 U-ll) 
■3n X,S 

From thermodynamic fluctuation theory,  the mean square fluctuation    of 

a quantity is (19) 

  kT 
(An)2  -    TglT- (1-12) 

l^xts 

where k is the Boltzman constant and T is the absolute temperature. 

From the expansion (1-6), the mean square fluctuation of the order 

parameter for T < T is: 
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kr 

4(b2-2ac) /2 n2 o 

fhus the scattered light is proportional  J: 

il-»2 

an2 i-A) 
I(T) -v  ori X,S T < T      (1-14) 

and at T 

(b2-2ac)1/2 

ae,2  Tt 
KT) -v (|^r]  x      T = T,-    (1-15) vdri v c D t ■3ri x.s 

If b>0, as in a second order phase transition far from the Curie 

critical point, I(T ) is finite. At the Curie critical point, a-b=0, 

and from (1-13) and (1-15) one would expect the fluctuations and the 

intensity of the scattered light to become inTinite. This obviously 

cannot happen.  To keep the intensity finite Ginzburg added another 

term to the free energy expansion (1-6):  d(Vn)2which is a gradient 

term taking into account the correlations between fluctuations in adja- 

cent volume elements.  Performing the same type of calculations which 

led to Eq (1-14) and including the d(Vn)2 term in $(ri) we obtain a new 

expression for the intensity of the scattered light (31): 

KT) % ^n ; =        (1-16) 

2[/b2-2ac - b] 

where q is the wave vector of the fourier comporent of the fluctuation 

giving rise to the scattered light.  This expression shows that the 
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         kT 

(An)2 -  7  (1-13) 

o 

Thus the scattered light is proportional to: 

t—2")   T 
I(T) -v  3n X.S T < Tt     (1-14) 

(b2-2ac)^ 

and at T 
t 

2  T 
3T1 X.S 

b t 

If b>0, as in a second order phase transition far fron the Curie 

critical point, I(T ) is finite. At the Curie critical point, a-b-O, 

and from (1-13) and (I-ls) one would expect the fluctuations and the 

intensity of the scattered light to become infinite. This obviously 

cannot happen, lo keep the intensity finite Girzburg added another 

term to the free energy expansion (1-6): d(Vr!)2 which is a gradient 

term taking into account the correlations between fluctuations in adja- 

cent volume elements. Performing the sam^ type of calculations which 

led to Eq (1-14) and including the d(7n)2 term in *(n) we obtain a new 

expression for the intensity of the scattered light (31): 

 iM 
/b2-2ac + ^ 

KT) -v,       ^n —^       (1-16) 

2[/b2~2ac - b] 

wb re q is the wave vector of the fourier component of the fluctuation 

giving rise to the scattered light. This expression shows that the 
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intensity remains finite at the Curie point when the term In d is 

retained. Moreover, the above equations show that at the Curie point 

I(T ) ■ 0. However, I(T) has a sharp maximum just below the transition 

temperature (31). 

GL-'burg was able to calculate the scattered intensity very near 

the transition temperature compared to the scattered intensity at room 

temper« ture. 

If we neglect the correlation effects, the intensity of the 

scattered light for a second order phase transition very near the Curie 

criticrl point (b-H)) is given by (1-15).  In terms of the Rayleigh ratio 

(scattering cross section per solid angxe per unit volume)(1-15) 

becomes (33): 

*<V ■ TT "t (f^)2 5 •»-'        »-^ 

where X is the wavelength of light. 

Glnzburg put this equation in terms o;; measurable quantities: 

Wj     l n 2 ■' = —TT- CI-18) 
o 

where n is the index of refraction and An is the difference between the 

index of refraction in the alpha and the beta phase. 

To find n ^ we assume that, in eq. I-8b, c is small; thus 

ob b 

Squaring both sides we have: 



a'2(Tt-T)
2 

n^ - —^  (1-19) 

From the jump In the specific heat for a second order phase transition 

(19): 

a'2Tt 
Acp " -£- (J-20) 

solving for (a')2 

Ac b 
a'2 = —2- (1-21) 

T 
t 

and substituting into (1-19) 

„ _ Acp(Tt-T) 

blt 

Thus from (1-18) 

n H - —K  . (1-22) 
o       bT 

f-H-l - ^2!ltk (I_23) 
^n2-'    ic (T-T)2 

P t 

and putting (1-23) into (1-17) we have the Rayleigh rati" for the licht 

scattered by quartz near the transition temperature: 

„2   4n2Än2Tt
2      , 

^V - 7.7 k c (T-T)^  Cm (I-24> 

Ginzburg substituted the following measured quantities (31) into eq. (1-24) 

n = 1.56 

An = 1.2 x 10-3 for T -T = .1CC 

(1-25) 
Ac  = 4.2 x 107 ergs/0C cm3 

P 

Tt = 8460K 
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and found: 

R(5:'30C) = \ k 239 x lO"7 cm-1 (1-26) 
A 

This calculation depends critically upon the mea.' arement of tb° 

index of refraction vs temperat've.  Since the numerical values chosen 

for An and T -T wc-e taken from an unpublished experiment, it is diffi- 

cult to critically examine U;?^e values.  It should be pointed out that 

the temperature interval chosen, T -T, is very iuipuii-cuit amce it occurs 

as the square of T -T. A value of T -T = 1 instead of equal to .1 would 

decrease eq. ^1-26)  by two orders of magnitude. 

In calculating the room temperature intensity, Ginzburg assumed 

isotropy and used Einstein'^ relation for light scattered by isothermal 

density fluccuatlons (34).  Ginzburg's value for the Rayleigh ratio at 

2Q0C  using the values in ref. (3;.) is: 

2 
R(20oC) = ^rk (15!) x lO"11) cm"1        (1-27) 

If quartz is correctly treated as a solid, the Rayleigh ratio at 20oC 

for light incident along the y directions and observed along the -x 

direction, with z perpendicular to the scattering plane is (33): 

2 
R(20oC) = ^k (99 x 10"11) cm'1 (1-28) 

A 

If we take the ratio of (1-26) to (1-27) (the Rayleigh ratio of 

quartz treated as an Isotropie substance), we find the relative increase 

in scattered intensity very near the transition temperature: 

I(5730C)  _  R(573'C)    -, s v in4 rT ,Q, 
I (20oC) " R (20oC)    1-5 x 10 (I"29; 

which is the value Ginzburg obtained. 
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If we take the ratio of (1-26) to (1-28) (the Rayleigh ratio of 

quartz correctly treated as a solid) we find the relative increase in 

scattered intensity very near the transition temperature: 

I(5730C)    R(5730C)    , ,  inu ,_ ,_N 
nwcT ' R (zo^c) = 2-4 x 10 (I-30) 

Results (1-29) and (1-30) are not inconsistent with one another consid- 

ering the errors on the quantities used to find these ratios. 

Thus, if quartz undergoes a second order phase transition, the 

Landau theory predic.s that the scattered intensity very near the .ransi- 

tior temperature would be ^lO1* greater than the scattered intensity at 

room temperature. 

Concurrently with Ginzburg's calculations, an experiment was per- 

formed which measured the relative changes in the light scattered by 

quartz as a function of temperature. Yakovlev et al (35) illuminated a 

piece of quartz with a mercury arc source and measured the scattered light 

with a photomultiplier tube. They foand that the relative increase in 

scattered Intensity was: 

il573°C) = 1A%l0H 
I (20oC)    i^ X iU 

Yakovlev photographed the scattering column at the transition temperature. 

Tbo scattering column had the appearance of a fog zone within the crystal, 

not unlike that observed in a liquid vapor system undergoj.ng a phase 

transition near its critical point.  The increase in light scattering 

at the quartz transition was termed opalescence, analogous to the observa- 

tions in a liquid-vapor transition. 
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Thus, it appeared that quartz underwent a second order phase 

transition near the Curie critical point and at the transition tempera- 

ture the quartz crystal opalesced. 

Ginzburg also emphasized the dynamical origin of  ie "opalescence." 

Taking as the order parameter n = Y» the fluctuations in n will then 

correspond to relative displacements of crystal sublattices so that T\ 

is identified with one of the zone center optical phonons. On the basis 

of a/ailable temperature-dependent spectroscopic information (21) Ginz- 

burg identified n with the totally symmetric Aj optic vibration, whose 

room temperature frequency is 207 cm-1. Ginzburg proposed that as the 

temperature is raised toward the transition temperature, T , the fre- 

quency of this mode should decrease steadily toward zero.  The Stokes 

and anti-Stokes components of the Raman spectrum would approach each 

other, finally merging into a single quasi-elastic peak which would 

continue to narrow and grow more intense due to the diverging fluctua- 

tions. 

It was this interpretation by Ginzburg which was the impetus for 

our experiments. By spectral resolution of the scattered light we had 

hoped to find the key to the observed opalescence and answer the chal- 

lenge posed by Ginzburg (31), "But why are there no experimental researches 

on the spectrum of the scattered light near second order phase transition 

points?" 
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CHAPTER II 

RAMAN SCATTERING IN CRYSTALLINE QUARTZ 

In this chapter we discuss the Ratnan scattering experiments per- 

formed on quartz from helium temperatures up to 6000C.  After a brief 

review of the general theory of the Raman scattering process, the Raman 

selection rules for quartz will be discussed.  Next, the early Raman 

scattering experiments performed on quartz will be reviewed.  Following 

a description of our experimental apparatus, we present the results of 

our temperature dependent Raman scattering experiments.  The chapter 

concludes with a discussio.i of these results. 

A.  CLASSICAL THEORY OF THE RAMAN EFFECT 

The complete description of the R^man scattering process requires 

a quantum mechanical theory (36, 37). However, to obtain the frequency 

relations in the Raman effect we can treat the optical field and the 

crystal classically (3b). 

Because of momentum conservecion, in the first order Raman effect 

only the modes at the center of the Brillouin zone (i.e. q«0) are 

studied.  Since, in normal vibrations with q^O the atoms in all unit 

cells vibrate in phase, it is sufficient to consider only the motion of 

the atoms in one unit cell. 

We consider a unit cell with n atoms, with a polarizability a, and 

with each atom connected to its nearest neighbor by a spring which 

represents the electron cloud separating them. A plane monochromatic 
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wave, E cos UJ t, is incident on the system and induces a dipole moment oo * 

because of the interaction of the electron cloud with the incident 

electric field.  Allowing for the tensor properties of the system, the 

induced dipole moment in the i (x, y, or z) direction resulting from the 

field polarized In the j direction is 

pi - VJ (II-I) 

The displacement of the atoms in a unit cell from the equilibrium posi- 

tion,   |x~X (, can be written as a linear combination of the normal 

coordinates R. : 

{X-xJ^      ^ cos nkt (II-2) 
k 

whe re Ji is the frequency of one of the 3n-3 optic modes of vibration. 

Expanding the polarizability about the equilibrium position {X }, 

'a ■ "13 «o» +1 t^f^-o'V (II-3) 

and substituting (11-2) and (II-3) into (II-l), the induced dipole moment 

has the form: 

Pi = W EJ
0coS V + K^^-T1 ^^0  + Vt + cos(uo- \)tJ 

(11-4^. 

The intensity of the scattered light is proportional to P 2.  The first 

term in eq. (1I-A) gives the light scattered at the Incident frequency, 

and the second term gives two components of the scattered light for each 

normal vibration at frequencies: 
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*& S        W —    p 
s     o  °"k 

(j   = a)  + 0, 
as    OK. 

called the St kes  and anti-Stokes components, respectively. From a 

quantum mechanical point of view, the Stokes radiation results from the 

creation of a phonon and the anti-Stokes radiation results from anrJ- 

hllation of a phonon. 

1. Selection ruled 

The vibrational modes of the lattice can be studied in the Raman 

effect only if they couple to the incident field. Considering only the 

frequency shifted scattered light, we rewrite eq. (II-A) 

?i " I "Li  Ej (II-5> 

where 

"   2 W ^-0^ 
and 

k     o 
E^  » E^  [cos (u + a ) t + cos (w - a ) t] j      j        ok ok' 

From symmetry considerations we can determine which modes may be Raman 

k  i 
active, i.e., a . f 0 and which modes will be Raman inactive, i.e., 

a^ £ 0 (1^. 

The factor ( _ J|    is evaluated at the equilibrium position of 
^\  ;Rk=0 

cne atoms and, theretore, is a numerical quantity which is a property of 

the unit cell in its equilibrium configuration and is invariant under all 

symmetry operations of the group.  Thus, under the operations of the 
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oa 
group the factor f -'M   R^ transforms in the same way as the normal 

coordinate R^ and the quantity will be non zero only if R^ tvansforms 

in the same way as on« of the polarizability components.  Since the 

polarizability is a second rank tensor, the normal vibrations which 

have the same transformation properties, i.e., the same irreducible 

representations, as a second rank tensor will be Raman attive. A second 

rank tensor transforms under the symmetry elements of the group in the 

same manner js the bilinear fonas of the basis \actors x, y, and z 

(i.e., x2, y2, z2, xy, xz, yz).  Since the character tables (Table 1-1) 

lL?t  the transformation properties of the various bilinear forms, we 

can immediately determine which species are Raman active. 

If we represent the bilinear forms as a symmetric 3x3 matrix 

x' xy xz 

xy y2 yz 

xz yz z2 

we determine which Raman active species will be observed for a given 

scattering geometry and a given polarization of the incident and scat- 

tered light. These tensors, called the Raman or polarizability tensors, 

have been tabulated for the Raman active species of the 32 crystal point 

groups (37). 

Table 11-1 gives the polarizability tensors for alpha and oeta 

quartz. Below each matrix is listed the corresponding irreduclbla 

representation of the normal vibration. An (x) or (y) occurring in 

brackets after an irreducible representation indicates that the vibracion 

Is also infra-red active and the polarization of fhu mode has the direc- 

tion indicated. From this table we see that by coupling to any off 
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Table il-l 

Polarizability Tensors tor Alpha and Beta Quartz 

»3(32) 

Alpha Quartz 

a 

.  b 

Al 

c -c -d 

-c -c d 

-d  d 

E(x,y) 

De(622) 

Beta Quartz 

■J 

-c 

-c  c 

d  d 

d -d 

Al El(x.y) E2 
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diagonal component only E(Ej+E2) modes will be observed in alpha (beta) 

quartz.  By coupling to the zz component, only the A^ modes will be 

observed in alpha and beta quartz. 

B. PAST EXPERIMENTS 

It was in quartz that Raman scattering in solids was first discov- 

ered (39). In 1928. Landsburg and Mandel'shtam, while searching for a 

"fine structure of the Rayleigh line" in quartz, observed lines whose 

f -equency shifts were so large that they could not be termed fine struc- 

ture. They were subsequently explained as Raman lines (referred to as 

"Combination Lines" in the Russian literature) arising from normal 

vibrations in a similar manner as the Raman lines observed ir liquids by 

C. V. Raman. 

Subsequently, Krishnan  in 1928 (40), Rasetti in 1932 (41) and 

several others, mostly in Russia and India, have investigated the Raman 

effect in quartz. 

The group theory of alpha quartz shows that there should be 12 first 

order Raman lines, eight of which are doubly degenerate. At room tempera- 

ture as many as 41 distinct lines have been observed (42), the majority 

of which were interpreted as second order Raman lines. While there was 

accord in the assignment of the four Aj lines, there was wide disagree- 

ment in the assignment of the other observed lines. 

The first study of the temperature dependence of the Raman spectra 

of quartz was performed in 1940 by Raman and Nedungadl who studied the 

spectra from liquid air temperatures up to 530CC (43). They observed 

that "the 220 cm  line behaves in an exceptional way; spreading out 



greatly towards the exciting line and becoming a weak diffuse band as 

the transition is ■'pproached." They Inferred that the resulting deforma- 

tions of the atomic arrangements associated with this particular mode of 

vibration are responsible for the changes in the properties of the 

crystal. 

Subsequent Raman studies in 1947 and 1948 by Narayanaswamy, who 

investigated quartz from room temperature into the beta phase, revealed 

that of all the fundamental vibrations of quartz, only the 207 cm" line 

had an anomalous temperature dependence, its frequency shifting toward 

zero frequency and its width broadening considerably as the transition 

temperature was approached (23).  Narayanaswamy reported no lines in the 

beta phase corresponding to the 207 cm  line in the alpha phase.  It was 

on the basis of Narayanaswamy's experiments that Ginzburg proposed that 

the 207 cm  mode was the vibration associated with the orde- parameter. 

The ...ost reliable pre-laaer Raman study on alpha quartz was performed 

in 1962 by Zubov and Osipova^who used a Mercury arc source and photoelectric 

recording (44).  Twelve lines were observed and the four Aj modes were 

correctly identified  However, their assignments for the fundamental 

frequencies of the E vibrations disagree with the later experiments. 

The first Raman study of alpha quartz using a laser as the exciting 

source was reported oy Scott and Porto (45), who measured the frequencies 

of the Ai and E modes and .gave .»olarization assignments to the E modes. 

C.  APPARATUS 

When one studies the spectra published in the literature cited above, 

the existence of some lines is immediately questioned.  Compared to present 



day Raman apparatus, the equipsent used decades ago vr.s quite crude 

and one is Impressed by the persevcrence of the pioneers In light scac- 

tering.  The exciting source was usually a mercury arc.  The scattered 

light was analyzed by a single grating or prism spectrometer, and the 

detection was photographic which required days of exposure time to obtain 

a spectrum.  The frequency shifts were measured from a microphotometer 

Cracing of the exposed and developed plate.  Extraneous scattered light 

in the spectrograph, ghosts and other emission lines of the exciting 

source consistently complicated the spectra and increased the problems 

of data reduction. 

The present day Raman scattering apparatus consists of -  .ser 35 

the exciting source, a tandem spectrograph to reduce the extraneous 

scattered light Inside the spectrograph, a photomultiplier tube to 

detect the scattered light, a^d . photon counting system to analyze the 

signal.  With this system a spectrum is recorded in minutes, polarization 

studies can easily be made, and extraneous scattered light Inside the 

spectrograph Is reduced. 

The apparatus used for our Raman experiments is shown in Fig. II-l. 

The early work was performed with a He-Ne gas laser (Spectra-Physics 

Model 125) with an output of 80 mW at 6328 A.  Most of the experiments, 

however, were performed with an Argon Ion laser (Spectra-Physics Model 

140) whose peak power at 4880 A was 800 mW.  The laser light was focused 

Into the sample.  Two mirrors were used to rotate the image of the scat- 

tering column by 90° so that the image was parallel to the slits of the 

spectrometer.  The scattered light was then focused onto ^-• slits of a 

Spe:< (Model ±400) 3/4 rioter tandem grating monochrometer.  Ihe slit 
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Recorder 

Fig. II-l. Apparatus used in Raman scattering experiments. 



57 

widths used were 250 and 100 microns, which gave a resolution of 7.5 cm 

and 3.0 cm" , rtspectlvely. 

The photomultiplier tube was an ITT Startracker (Model FW130) with 

a rectangular (18 mm x 2 mm) S-20 photocathode surface.  The small photo- 

cathode results in a very low dark current, so that very w^ak signals may 

be detected.  The room temperature dark count rate of 250 cts/sec. was 

reduced to 3-5 cts/sec. by cooling the tube. 

The photomultiplier tube was followed by an emitter-follower, an 

amplifier (Sturrup-Model 1415) and a single channel analyzer (Sturrup- 

Model 1430) yhich discriminated against the pulses that did not originate 

at the photocathode. The uniform output pulses of the analyzer were 

counted and integrated by a ratemeter (Hamn^r-Model NR-10) and the signal 

was recorded on a strip-chart recorder (Leeds and Northrup Speedomax W). 

The features in the spectrum ?re measured in terms of wavelength, 

converted to wavenumbers and then subtracted from the wavenumber of the 

exciting line to give the Raman shifts in cm" .  For sharp lines, the 

erro'- in the measured shifts is ±2 cm .  For broader lines, and those 

close to the Rayleigh line, where the Instrumental Rayleigh wings distort 

the line shape, the error is ir reased due to the uncertainty in the 

location of the line center. 

A specially constructed, temperature regulated oven was used to 

study quartz from room temperature up to 650CC; its construction and 

performance are described in Appendix B.  For low temperature work, a 

commercial Hofman Dewar was used to study quartz at liquid nitrogen 

temperatures (770K) and close to liquid helium temperatures (20oK). 
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Two natural quartz and two synthetic quartz samples were studied, 

the former being Brazilian quartz and supplied by Karl Lambrecht- 

Crystal Optics and a private collector; and the latter were supplied by 

Western Elecfic Co. and Sawyer Research Corp. All samples were cut and 

polished with faces perpendicular to the XYZ axes and were approximately 

cubic in shape with each edge about 12 mm. in length. 

The crystal orientation for the Raman experiments was with the light 

incident alon« X, scattered along Y, and Z perpendicular to the scattering 

plane. By proper polarization of the incident and scattered light we 

were able to select, separately, the A^ and the E (in beta quartz Ei + Ev) 

modes. For incident and scattered light polarized perpendicular to the 

scattering plane (denoted W or in the notation of Damen, Porto and Tell 

(A6) x(zz)y), we couple the light to the zz component of the polarizability 

tensor (Table 11-1) and only the Ai modes are obseived. For vertically 

polarized incident light and horizontally polarized scattered light 

(VH or x(zx)y), or horizontally polarized incident light and unanalyzed 

scattered light (HT or x(yz+yx)y) we couple the light to the off diagonal 

components of the polarizability tensors and only the E modes (in beta 

quartz E1+E2) are excited. 

D.  EXPERIMENTAL RESULTS 

Figure II-2 shows the room temperature Aj and E spectra for alpha 

quartz which are in agreement with the first laser Raman spectra of 

quartz observed by Scott and Porto (45). The measured frequencies are our 

values, and the polarizalon assignments are those of Scott and Porto. 

The important observations are the appearance of 5 lines in the Aj spectrum 
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A 
cm 

cm -i 

CM 

U^ 

Fig. 11-2.  Room temperature Raraan spectra of alpha quartz with 
measured values of frequencies in cm  , and Scott and Porto's (ref. 45) 
polarization assignments (L=longltudinal, T=r:ransverse).  (a) The x(zz)y 
spectrum showing the Aj modes,  (b) The x(yx+yz)y spectrum showing the E 
modes. The arrows indicate intense Ai modes being transmitted due to 
non-ideal polarizers and imperfect alignment. 
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Instead of the A predicted by group theory.  In the observed E spectrum 

there are 12 lines instead of the 8 predicted by group theory.  The origin 

of the extra lines in the E spectrum has been satisfactorily explained as 

due to a lifting of the dege. eracies by long range electrostatic inter- 

action.  These observations will be discussed more fully in the next 

section. 

On cooling the crystal to -250oC the Raman shifts changed very little 

from the room temperature values.  Figure II-3 shows the Aj spectra from 

60 to 200 cm-1 at three different temperatures:  -250oC, -1940C and 

-A0oC. The sharp low frequency line is the 128 cm-1 E line which is 

transmitted due to imperfect alignment and non ideal polarizers.  (The 

spectral features will be named according to their room temperature fre- 

quencies.) Note that the intensity of the 147 cm-1 line decreases quite 

rapidly as the temperature is decreased with little change in frequency 

or llnewldth. 

Figure II-4 shows the Aj spectrum at five different temperatures 

above room temperature (the top trace is in the beta phase). The most 

striking result is the rapid increase in the intensity of the weak 

147 cm"1 line and its corresponding decrease in frequency as the sample 

approaches the transition temperature. The 147 cm-1 line is not present 

In the beta phase.  The 207 cm-1 linp is seen to broaden and shift toward 

lower frequencies, as reported by Uarayanaswamy, but its frequency does 

not reach zero and it is still present in the beta phase as a broad band 

centered at 162 cm" . The temperature dependence of the frequency of the 

147 and 207 cm'1 lines is plotted in Fig. II-5.  (We see Chat synthetic 

quartz has the same frequency vs temperature behavior as natural quartz.) 
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H**dtW\fjM 

r 

-40 0C 

-194 0C 

-250oC 

-200    -175      -150     -125 

fl (cm-1) 
Fig. II-3.  The 100 V.o 200 cm-1 portion of the x(zz)y Raman spectrum 

showiPi; the temperature dependence of the 147 cm" feature. 
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It is seen that the frequency of the 147 cm-1line does not go to zero 

continuously, but decreases to a value of 30 cm"1 -md then suddenly dis- 

appears from our spectra.  On cooling, the line reappears at a tempera- 

ture 10C  lower than that at which it disappeared on heating. 

The frequencies of the other A^ lines change very little with 

temperature. Fig. 11-6. The 466 cm-1 line, which is very intense at room 

temperature, broadens scmewhat with increasing temperature, but persists 

through the transition having shifted to 459 cm"1 in the beta phase. 

This has been observed in earlier experiments. The 355 cm~^ and 1081 cm-1 

lines, which become Bj Raman inactive modes in the beta phase, decrease 

in intensity with increasing temperature and are not present in the beta 

phase. Fig. II-7 is a plot of the intensity of the 355 cm"1 line vs 

temperature. 

A plot of the measured linewidths of the 147 cm"1, the 207 cm"1, 

and the 467 cm-1 lines is shown in Flg. II-8. The 147 cm"1and 207 cm"1 

lines are already broad at room temperature and continue to broaden as 

the temperature Is raised. There are large errors in these measurements 

especially at temperatures above 200oC where the determination of the 

zero intensity level is not possible due i the large amount of second 

order scattering being excited^and overlapping spectral lines. 

Summarizing the observations on the A} lines, there appear to be 

five A^ modes in the alpha phase (Fig. II-2, II-3, and II-4) and two 

mor s in the beta phase (Flg. II-4). However, group theory predicts that 

there should only be four Aj modes in the alpha phase, and at the transi- 

tion three of the *our Aj^ modes become Raman inactive B^ modes, while only 

one of the four will be present in the beta phase as a Raman active Aj 

mode (Table 1-3). 
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The E modes show little temperature dependence.  The lowest frequency 

E mode which has the strongest temperature dependence of the E modes 

shifts from its room temperature frequency of 128 cm-1 to 96 cm-1. There 

has been wide interest in this mode since it is the lowest frequency 

transverse optical vibration. Attempts have been made to observe polaritons 

associated with this mode (47, 48). Also, this is the first infrared 

active vibration in a crystal to be observed in stimulated Raman scatter- 

ing (49). Table II-2 correlates the E lines observed at room temperature 

with those observed in the beta phase.  In the beta phase the E1+E2 lines 

have broadened and some splittings which were observed at room temperature 

are no longer seen at high temperatures. 

E. DISCUSSION 

1.  E Spectrum 

In the E spectrum of alpha quartz (Fig. II-l) there are 12 observed 

lines instead of the 8 doubly degenerate lines predicted by group theory. 

The explanation of the additional lines is that the E modes are also 

infra-red active so that there is a dipole moment associated with these 

vibrations which gives rise to a long range electric field which lifts 

some of the long wavelength phonon degeneracies. 

The lifting of the degeneracies is closely related to the LST rela- 

tion derived for a single optic vibration in ionic crystals (50). London 

predicted a lifting of a degeneracy for uniaxial crystals (37), and 

Scott and Porto applied the theory to quartz (45). Bom and Huang discuss 

the macroscopic equations governing the lattice modes in a solid (51): 



Table II-2 

Frequencies of E Modes in Alpha Quartz and 

E1+E2 Modes In Beta Quartz 
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Alpha Quart 
E Modes 

1 
;z       t Beta Quartz 

E1+E2 Modes 

-250C 5250C 5850C 

128 (LfT) cm" -1 110 cm"1 96 cm-1 

264 (L+T) 252 249 

39< (T) 
403 (L) 

398 399 

452 (T) 
508 (L) 

440 
502 

414 
494 

698 (T+L) 686 684 

798 (T) 
811 (L) 

785 
797 

792 

1067 (T) 
1233 (L) 

1063 
1224 

1067 
1228 

1161 (T+L) 1165 1149 
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\    "    -\2\ + \E (II-6) 

m ? "JA^*0-1 (11-7) 

where R. is proportional to the relative displacements of the atoms in 

the k  vibrational mode; Z. is the effective charge density for the k 

mode; ? is the electric polarization, a^ is the electronic polarizability 

and f is the macroscopic field defined in Maxwell's equations.  ft, 2 is 

proportional to the restoring force for the k  mode which includes, in 

addition to the short range interatomic forces, the Lorentz field contri- 

bution to the effective field at an atom (5).  The sun is over the m 

Infrared active vibrational modes. 

■*' *♦■    ■*■ Kuit—0*f) 
Letting E, P and R. all be plane waves proportional to e        we 

can solve (II-6) for R. 

\ n 2_«2 
k 

(II-8) 

and substituting into eq. (II-7) 

m 2 _ 

o + I 00 M 

k-i nk
2-*i2 

(II-9) 

From the definition of the electric displacement 

e(w)E = E + 4TtP (11-10) 

and substituting eq.   (II-9)  into eq.   (11-10) 

e(w) -    1 + Aitc^ + An I    ?r^2- 
m Z, 

n" 
k»l 
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S j] 2 

e(u) - £(-)+! -M-r (11-11) 

where we defined the high frequency dielectric constant: 

e(») - 1 + 4*0^ (11-12) 

and the mode strength for an infrarsd oscillation: 

sk   ■ i^r ("-i3) 

The S, determine the value of the static dielectric constant: 
k 

e(o) - e(») + I S, (11-11') 
k K 

If we restrict ourselves to lattice waves having a phase velocity uuch 

less than the velocity of light in the crystal we can neglect any retarda- 

tion effects and Maxwell's equation for the macroscopic field are: 

7-5  - V«(E+4nP) = 0 (11-14) 

VxE - 0. (11-15) 

From eq. (11-14) 

7.E - -4*V-P (11-16) 

and substituting eq.   (II-7)  into eq.   (11-16)  and using eq.   (11-12) 

'•E    •    JTS-   I ZJ-Rfc (11-17) 
ev ; k-1  K     K 

With eqs. (II-6) and (II-7) we can solve for the macroscopic field, E. 

We split R. into its transverse and longitudinal components, R- RkL+ \~ 

and treat each case separately. 
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CASE I:     If Ulis transverse,  R.   » il     and 

V*\ + 0 

From eq. (II-7) we see V»E ■ 0; and Irom Maxwell's equation (11-15), 

VxE ■ 0. Thus in a transverse optic (TO) mode, t - 0.  In the equation 

of motion (eq. II-6) the second term on the right is zero and the fre- 

quency of the transverse modes are the ß. 's of eq. (II-6): 

"kT " V 

From eq. (II-7) we see that there is a polarization even though E « 0. 

Since ^ - {^r~]  E (eq. 11-14) in order for l + OasE-^O, e has to 

approach ». Thus, in terms of the dielectric constant, the frequencies 

of the TO phonons are the poles of c(a)) (eq. 11-11). 

CASE II:  If £ is longitudinal, it - t.    ,  and 

VxR. » 0 

1'\ k  0 

From the latter equation and eq. (11-17): 

Putting this into eq. (II-6): 
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Removing Che k  term from the sum and rewriting. 

From eq. (11-20) we see that the R. 's are no longer dynamically Independent 

and that the frequency of the k  longitudinal optic (LO) phonon differs 

from the frequency of the TO phonon. 

If we consider the special case where there Is only one mode there Is no 

sum In eq. 11-20, and 

4*22 
V -["kx+ ^-J «k (II-21) 

The frequency of the k  LO mode Is: 

Since all the factors are positive In the second term 6n the right, we 

see that the frequency of the LO phonon Is greater than the frequency of 

the TO phonon. 

From the definition of the strength of the mode (eq. 11-13), eq. 

(11-22) becomes: 

\L - "kT [i+ n=r] <II-23> 

and from eq.   (11-11') 

"kL Mp) 
2 

cT 

which is the LST relation for a single optic mode (50) 

o2- TM (11-24) 
kT 
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Returning to the general case with m vibrational modes, from 

eq. (11-18), E is non -ero and eq. (11-16) implies: 

t    "    -4IT? (II-2S) 

and thus D » 0 for an LO phonon.  From the definition of the ftonuencj 

dependent dielectric constant (eq. 11-10) we see that fot the LO phonon. 

e(m) ■ 0. Thus the frequencies of the LO phonons are the zero's of the 

dielectric constant.  From eq. (11-11): 

C00) +1    , K  = (11-26) 
k-nk'.f\L 

If the TO modes are well separated from one another, so that in 

eq. (11-26), I^-T-^UJ10,1 for k'+k. only the k  term will contribute 

significantly to the sum and eq. (11-26) becomes the LST relation, eq.(11-24). 

If this approximation cannot be made, the sum in eq.(11-26) has to be 

performed and one Tlnds a more complicated expression for the LST relation 

(52,b3): 

k-1 "kT    ZK ' 

In summary, we have shown that the long range electrostatic inter- 

action will remove the degeneracies of the E vibrations and that the 

frequencies of the longitudinal modes (the zero's of the dielectric constant) 

are greater ther» the frequencies of the corresponding transverse modes 

(the poles of the dielectric constant). 

Scott and Porto (4') calculated the frequencies of the LO phonons for 

the E vibrations by using eq.(H-26), their measured values of &*, and the 
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mode strengths, S, , from Spitzer and Kleinman (54).  Their measured LO 

frequencies agreed, within experimental error, with our measured values. 

In Flg. II-2 and Table II-2 we see that the splitting of the 128, 

265, 697 and 1172 cm-1 lines is not resolved. The reason for this can be 

seen in eq. (11-23), where it is shown that the frequency difference be- 

tween th». LO and TO phonons it proportional to the infrared strength of 

the vibrations.  The strengths of the 128, 265, 697 an.1 1172 cm-1 vibra- 

tions is small compared to the other infrared active vibrations (54). 

Attempts to resolve the LO-TO splitting of the 128 cm~^ lLt°  were made at 

low temperatures but with no success (55). However, the spitting did 

manifest itself as an obierved broadening. 

2. Ai  Spectrum 

Another striking feature in the Raman spectrum of quartz is the 

appearance of 5 lines of A^ symmetry in the alpha phase Instead of the 

4 Aj lines predicted by group theory.  In addition to this apparent dis- 

agreement with group theory below the transition temperature, there appears 

to be a contradiction with group theory above the transition temperature 

where two lines are present in the Aj spectrum of the beta phase and 

group theory predicts only one. 

The number of vibrations of each species is calculated by group 

theory on the basis of the spaca symmetry of the solid and the position 

of the atoms in the unit cell.  Th«1 symmetry of alpha quartz has been 

well established for decades (1, 2) and the symmetry of beta quartz also 

seems beyond dispute (1, 2). Thus, since It is unlikel> that the symmetry 

determination of the different phases of quartz is incorrect, another 

explanation for the discrepancy between the group theory and experiments 

is sought. 

" '•*•-• Li. .k_iaA^B^^^IBHBMAAi^auittacMa&/^^BMK; 
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Originally (56) the 147 cm-1 was thought to be the result ct a second 

order Raman scattering process.  However, this explanation seemed unlikely 

beca  " the striking temperature dependence of the frequencv of the 

147 cm  line (Figs. II-4 and li-5) indicated that It playe a fundamental 

role in the phase transition.  The second order assignment would not, In 

ar/ case, resolve the difficulty in the beta phase arising from the per- 

sistence of both the 466 and 207 cm-1 lines.  An £.d hoc model which 

explained the basic temperature dependent results was proposed by Shapiro, 

O'Shea and Cummins (22): 

As we have seen^ the silicon ions in the beta phase are 

located at hexagonal sites with the oxygens halfway between neighboring 

silicons.  In the alpha phase the silicons are displaced in one of two 

directions along a twofold symmetry axis and ehe oxygens also move to one 

side of their beta phase sites. All the ions move in double minimum 

potentials centered around their beca phase sites. The double wells are 

strongly asymmetric due to the cooperative interaction in the (ordered) 

alpha phase so that all the ions tend to be on the same side of their 

double well. The two possible arrangements, depending on which side of 

the well has the lower energy, constitute the electrical or DauphinÄ 

twins of quurtz (20). 

Although it is usually assumed that in an untwinned crystal all unit 

cells have the same configuration, any one cell has a finite probability 

of beinf, in the unfavorable (higher potential minimum) configuration 

which is proportional to the appropriate Boltzmann factor.  Thus, assum- 

ing the quadratic terms of the local potential to be different at the two 

sites, the strong normal oscillation at 207 cm-1 would be ijccompaniad by 

a weaker satellite at a different frequency.  As the temperature is 
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increased the energy difference between the two configurations decreases 

.ind the intensity of the satellite line would increase, approaching that 

of the parent line. If, in addition, the height of the barrier decreases 

faster than the energy difference between the two ninima, it would be the 

satellite whose frequency would decrease steadily towards 0 as the transi- 

tion is approached. 

In order to explain the persistence of the "forbidden" A^ mode In 

the beta phase, one might ascribe a dissymmetry to the local-potential 

minimum. Extensive x-ray measurenents show that a double-minimum configu- 

ration with random occupation (appropriate to an order-disorder transition) 

In the beta phase is highly unlikely (20). Nonetheless, a small residual 

dissymmetry cannot be ruled out and could account for the extra Ax mode 

observed in the beta phase. 

Another model recently proposed by Scoct (57) explains the unusual 

temperature dependence and selection rules exhibited by the 147 cm-1 and 

2C7 cm"1 Raman features as due to the coupling between one and two phonon 

excitations. The 207 cm-1 line is essentially a zone center Ai optic 

vibration while the feature at 147 cm^is a second ordtc Raman line which 

Is the rtciult of the creation of two zone edge acoustic pl.onons with equal 

and opposite wavevectors. The arguments given by Scott for the second 

order nature of the 147 cm-1 line are the appearance of his spectra at 

low temperature and the peak at 70*5 cm-1 observed in neutron scattering 

experiments on polycrystalline quartz. 

As the temperature is raised, the two excitations become mixed due 

to the coupling produced by the anharmonicity. Around 330oC the excita- 

tions are thoroughly mixed and the observed spectral features can no 

longer be described as one or two phonon processes. As T -♦• T , the 
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excitations again uecome distinct, and the low frequency component has 

become the one-phonon mo<l3 and the higher frequency line is the two phonon 

excitation. Thus apart from the complications produced hy the mixing, the 

earlier assertion that, the frequency of the 207 cm-1 mode approaches zero 

as the transition temperature is approached is apparently correct. Above 

T the observed feature at 165 cm"1 is essentially second order (q f 0) 

and hence does not violate group theory whose calculations are for q = 0. 

The soft optic mode is expected to harden for T -* T , but it is a Raman 

and infrared inactive Bi vibration. Early attempts to detect it by neu- 

tron scattering experiments have been unsuccessful (58). However, recent 

neutron diffraction experiments have detected the soft mode in the beta 

phase (59). 

Fig. II-9 is a log-log plot of the measured frequency of the 2G7 cm"1 

and the 1A7 cm-1 lines vs AT - T -T where T is taken as 3460K (=5730C). 

The dotted lines show the temperature behavior of the soft, zone center 

Raman line and the second order Raman line in the harmonic approximation, 

i.e., if there were no anharmonic coupling. The uncoupled behavior of the 

soft phonon vas deduced from the fact that at >;ery low temperatures, 

T -T = 8260K, and at high temperatures, T -T = 10K, the coupling between 

the zone center and the zone edge phonons is small. A: the low tempera- 

ture, the higher frequency line (220 cm" ) is the q = 0 zone center optic 

phonon and the lower frequency line (160 cm- ) is the second order Raman 

line resulting from the creation of the two acoustic phonons with opposite 

momenta. At the high temperatures, the higher frequency line is the second 

order Raman line and the lower frequency line is the soft optic phonon. 

The slope of the line connecting the frequency of the soft phonon at low 

temperatures with the value at th« high temperature giv-is the temperature 

behavior of the frequency of the uncoupled soft phonon: 
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Ü    = AjT - T |Y 

where     A = 41 * 5 cm-l/(0K)Y 

r - .25 ^ .05 

"D-e frequency of the uncoupled second order Raman line is arjsumed to be 

temperature Independent and is taken as the value at T -T = 3260K: 160 cm . 

Comparison of the obser\'ed frequencies with the uncoupled frequencies 

shows the characteristic level repulsion behavior predicted in other 

temperature dependent systems with coupled modes such as BaTi03 (60) and 

iQP (61). 

We can derive a relation to fit the observed data.  In Chapter I we 

discussed «.he harmonic approximation of a crystal system and showed that 

in the harmonic approximation the total Hamiltonian can be written as the 

sum of individual simple harmonic oscillator Hamlltonians. Considering 

only the soft mode and the two acoustic modes, the partial Hamiluonian, H 

can be wr "ten as 

H « H + H' + H"+ W 
o   a   a 

where H is the Hamlltcnlan for the uncoupled zone center optic mode, 

H' and H"are the Hamiltonians for the two uncoupled zone edge acoustic 
a    a 

phonons with equal and opposite momenta,and V is the anharmonic contribu- 

tion which couples the soft mode with the uwo zone c'ge phonons and 

enables energy to be transferred between the zone center and the zone 

edge phonons. The Hamiltonian, H, depends on temperature since H is 

temperature dependent and W may also have a temperature dependence, although 

H' and H" are assumed to be temperature independent, 
a    a 

If the normal coordinate of the coupled systero, Q, is a linear com- 

bination of the uncoupled coordinates, Q , Q' an.- Q" we write (in 
O   &       3. 

matrix form) 
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(11-28) 

V 
where Q , Q' and Q"are the eigenvectors of the uncoupled Schrodinger 

equations: 

H Q - ß Q 
o o    o o 

H'Q' -  ß'Q' 
a a    a a 

b (11-29) 

a^a    a ya 

and SI , fi' and R" are the normal frequencies of the optic and the two 

acoustic phoncns at a given temperature. If we utilize the assumption 

that the two acoustic phonons are equal, but with opposite momenta, we 

can write: 

(%')*-   Qa' 

This Implies that H' - H"and £2' - fi". r a   a     a   a 

If we write 

% - V+ V 

H - 2H' 
a    a 

fl - 2n" 
a    a 

Eq. 11-29 b and c can be combined: 

H Q - fl Q 
axa   a a (11-30) 



The Schrodinger equation for the coupled system is: 

H ^ = pg 
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with K - H + H + W, or 
o   a 

W    "a 
- n (11-31) 

To find the eigenvalues of the coupled system we solve the secular equa- 

tion: 

JH - OiJ Ü - 0 (11-32) 

and we obtain: 

ß(±) - i {n + n ±[(n   - ß )2 + 4w2]1/2} (11-33) 

where fi is the frequency of the soft phonon line and n is the frequency 

of the second order Raman line In the uncoupled system. 

In order to fit the observed data it is necessary to select the 

proper temperature dependence for the anhaimonic coupling parameter W2. 

Scott let W2 be proportional to the experimental linewidth of the more 

intense line of the two spectral features. 

We tried various forms for W2 in order to obtain a good fit with the 

experimental curve. In Fig. II-9 the circles (•) represent a plot of 

eq. (11-33) vs temperature with a constant coupling parameter W2 ev1uated 

at the crossover point for the uncoupled modes (n = fl » 160 cm ).  It 

is seen that the fit Is quite good for small T - T, but for large T - T 

(low temperatures) the calculated points lie beyond experimental error. 

Thus a constant W2 is unacceptable. 
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allowing W2 to vary linearly with temperature yielded the best 

fit of eq. (11-33) with our experimental data (the crosses (+) in 

Fig. 11-9). The use of a linear temperature dependence for the anhar- 

monic coupling parameter is consistent with recent calculations of the 

many body Green's function of an anhar onic crystal (62, 63).  In this 

formalism the harmonic frequency flT4 Is replaced by a renormalized 

frequency ft. 

ü' fij + 20^1) (IT-34) 

where D is the contribution of the self energy of the phonon to the 

frequency. Detailed expressions for the self energy factor D have been 

evaluated in the lowest order by Maradudin and Fein (61., ,  D is a com- 

plex frequency and can be written as 

D - A - if (iI-35) 

where A is the frequency shift due to the anharmonicity and F is the 

reciprocal lifetime of the phonon state. 

The temperature dependence of C is due to the occupation number 

n - e "üx" "    » since the complete expression for eq. (11-35) shows 

D to be proportional to n (62, 63).  In the high temperature limit. 

kx » hH , and thus n 

T D ^ n ^ _ _ 
"H 

The self energy contribution to the harmonic frtqu;ncy, D, includes the 

anharmonlc terms rf tl i tot.31 hamiltonian. If we identify the quantity 

20^0 in eq. (11-34) with K2 of eq. (11-33), wa see that 
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H 

Thus the coupling parameter, W2 is proportional to T.  Tills linear 

temperature approximation is the same as Scott used since the width uf 

the spectral lines also appears to be a linear function of temperature 

far f:.om Tt (Fig. II-8). 

The above discussion, though lacking in rigor, does yield a con- 

vincing argument for a linear temperature dependence for the anhar- 

monicity. This type of approach has been used by Cowley in the study 

of ferroelectriclty and the phase transition in SrTlOg (64).  In 

Cowley"s thaory the temperature dependence of the soft '-irmal mode 

arises from the anharmonic Interaction between the normal modes of the 

crystal.  If, in eq. (11-34), the square of the harmonic frequency is 

negative and written as -KT., and the quantity 2nuD is written as KT, t n 

eq. (11-34) becomes 

Ü2    = K(T - Tt) 

which is just the temperacure dependence of the soft mode of a ferro- 

electric crystal derived by Cochran, who considered the temperature 

dependence of the soft mode as arising from a change in the potential 

function with temperature (65). 

Additional evidence that Scott (57) used to support the second 

order nature of the 147 cm-^ line is that his low temperature spectruir 

(100oK) shows several broad, asymmetric maxima in the 147 cm~^ region. 

We have observed the low temperature Raman scattering in the low 

frequency region of the Aj spectium (Fig. II-3) and our spectra differ 
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appreciably from Scott's. We see the strong 207 cm-1 line, the broad 

147 cm-1 line and, also, a small part of the 128 cm"1 E line which is 

transmitted due to non-ideal polarizers. The several maxima Scott saw 

in the 147 cm"' feature were not observed in our spectra. However, the 

second order nature of the 147 cm-1 excitation manifests itself in the 

T dependence of its Intemity.  In first order Raman scattering one 

phonon is created (Stokes line) and the intensity of the line is pro- 

portional to (n^l) [nj " (e *  -l)  where fij is the frequency near 

the center of t'.ie Brillouin zone] .  In second order Raman scattering 

two phonons with equal frequency and opposite momenta are created (over- 

tone Stokes line) and the intensity is proportional to (n2+l)2 

[n2 " (e 2  -Ij  where f^ ^B  the frequency of one of the phonons 

involved] (37).  In quartz, the second order Raman line is due to tno 

creation of two zone edge acoustic phonons (57). A plot of (nj+1) and 

(nj+l)2 vs temperature (Fig. 11-10) showp that in the 150 c^-1 frequency 

region a second order Raman line (202 = 150 cm"1) has a stronger tempera- 

ture dependence than a first order Raman line (Qj = 150 cm"1). Our 

spectra show this qualitative behavior if we compare the intensity of 

the 128 cm-1 first order E line with the 147 cm-1 line in Fig. 11-3. 

Thus we conclude that the 147 cm-1 line is a second order Raman 

line and that the anharmonic coupling between the zone center and two 

zone edge phonons contributes to the anomalous temperature dependence 

of the frequency and intensity of the 147 cm-1 and the 207 cm-1 lines. 

The 207 cm-1 line is the "soft" mode, as predicted, but its nature is 

complicated by the coupling. 
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CHAPTER III 

BRILLOUIN SCATTERING IN CRYSTALLINE QUARTZ 

In this chapter we discuss the Brillouin scattering experiments 

performed on crystalline quartz from room temperatuie up to 600oC. We 

begin with a discussion of Brillouin scattering in solids and then discuss 

the elastic and photoelastic behavior of solids. Next we review tii« 

early Brillouin experiments performed on quartz.  Following the descrip- 

tion of the apparatus, the results of the present Brillouin experiments 

will be presented. The elastic constants calculattd from the Brillouin 

shifts will be compared with the elastic constants measured by ultra- 

scaic techniques. 

A. THEORY 

As discussed in Chapter I, fluctuations in the dielectric constant 

of a material cause light to be scattered.  Since these fluctuations in 

the dielectric ccr.srant atise from the atomic motions of the system, we 

can expand the fluctuations in terms of the normal coordinates of the 

solid: 

3n Be, 

Jj T^f \ ""-» 

where the translational symmetry of the crystal has been used to reduce 

the sum to 3n terms (n is the number of atoms within a unit cell). The 

above sum can be broken up into two sums: 
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Ac 
3  3£..      3ii 3C

1;J 

i^Ji v^^l v^0 (III"2) 

where the first sum corresponds to the 3 acoustic modes with a given 

mom ntum and the second sum corresponds to the 3n-3 opti_ modes of vibra- 

tion. 

la the preceding chapter we discussed the optic modes of vibration 

at q * 0 which were studied by Raman scattc Lng.  In this chapter we deal 

with light scattering from acoustic modes, which for q ^ 10 cm" are 100 

times lower in frequency than the optic modes.  The phenomenon of light 

scattering from acoustic  ies is called Brillouln scattering after 

L. Brillouln who, in 1922, predicted that light should be inelastically 

scattered oy sound waves in a transparent medium (66). 

The theory of Brillouln scattering In solids has been adequately 

discussed in several papers (67, 68, 69, 70). We will not repeat any 

derivations but will draw upon the references for the necessary relation- 

ships . 

In light scattering experiments, momentum conservation restricts 

q a 105 cm~^ near the center of the Brillouln zone.  From the dispersion 

curve for the acoustic modes (Fig. 1-3) we see that in this region, ft. 

is proportional to q. The proportionality constant is the velocity cf 

sound in the medium: 

a£   -  rkq    (i-1,2,3) (III-3) 

From momentum conservation: 

q     -     L   - iJ (III-4) M is 
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where k, is the wavevector, in the solid, of the incident light and 

k is the wavevector, in the solid, of the scattered light. Thus the 

scattering geometry selects the. direction of a particular q and, since 

the frequency of sound is much less than the frequency of light, 

ik-i! *   I^J» che magnitude of q is: 

|q|  * l\k±\   sin  | 

- ^ slnf (III-5) 
o 

where 8 is the scattering angle, X is the wa\alength of light in vacuum 

and n is the index of refraction of the medium (birefringence has been 

neglected).  Thus the frequencies of the phonons excited in light scat- 

tering experiments are 

n/ - vk ^p- sin |     (k-1.2.3) 

4      e (III-6) 
■ 2« — n sin ^ 

o c       2 

where u is the frequency of the incident light.  Fig. III-l shows the 

scattering arrangement for light scattered at angle 6. 

In a solid, for a given q, there exist three acoustic modes:  one 

longitudinal (L) or quasi-longitudinal (QL), and two transverse (T) or 

quasi-transverse (QT).  Inese three modes may all have distinct frequencies, 

or some may be degenerate. A Brillouln spectrum will, in general, con- 

tain three down-shifted. Stokes lines (phonons created) at frequencies: 

&),S - u. - fl.0 - ü) [1 - ^n sin I ] (k-1,2,3) k     ok 
(III-7) 
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and thrae upshifted, anti-Stokes lines (phonons annihilated) at fre- 

quencies: 

as a     r.  2w     i 
"'k  " "o + "k  0 "o^1 + —^ n sin 2 ]  (k-1.2,3)     (III-8) 

A typical room temperature quartz Brillouin spectrum is shown in 

Fig. III-2. Here q is along the [110] direction of the quartz crystal. 

We see that none of the modes are degenerate and that the frequency 

shifts are less than 1 cm~^. 

In the Brillouin experiments, the frequency shifts, fi. , and the 

angle are measured; whence the sound velocity can be computed by 

eq.(III-6). The velocity of sound, in turn, is related to the elastic 

properties of the medium. Thus by means of Brillouin scattering we are 

able to study the behavior of the elastic properties of the solid at a 

higher frequency than conventional ultrasonic techniques ("v 1010 vs 

vlO6 Hz.). 

1. Elastic Properties of Solids 

The properties of the long wavelength acoustic modes of a crystal 

can be derived by considering the crystal as an elastic continuum and 

applying the classical theory of elasticity (71, 72).  The generalized 

Hooke's law relating the stress and strain tensors is: 

hi   - ciVa\i (III-3> 

where X  is the stress, x... la the strain and C.... are the elastic 

stiffness constants (summacion over repeated indices is implied). There 

is an additional contribution to the stress from the piezoelectricity: 
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~ejjE. (where e,, is -he piezoelectric coefficient) but in quartz this 
ij j       ij 

contributes < 1% to the velocites and is dropped in these calculations. 

If we utilize the symmetry properties of the elastic constants (9): 

Cijkl " Cjikl " Cijlk " Cklji 

and use the reduced notation (see Chapter I, p. 15 or Reference 9) we 

rewrite eq.(III-9) in the reduced notation: 

X  - C  x (III-10) m     mn n 

(the subscripts i,j,k,l take on values from 1 to 3; and the subscripts 

m,n,p,r take on values from 1 to 6). For each crystal system, the elastic 

constants C  are restricted by symmetry and some vanish Identically. 

Appendix A gives the measured values of the elastic constants for alpha 

and beta quartz and displays them in matrix form. 

The components of the symmetrized strain are related to the particle 

displacement u(r), by 

1 ^Ui  3U1^ 
Xij " 2^ + 1$ (III-11> 

The equations of motion of an elastic body with a mean density p, are 

given by: 
3X 

pPj - -3^ (111-12) 

and from the definition of the stress (eq. III-9), and using the unsym- 

metrlzed strain we have: 



9H 

We look for plane wave solutions of the form, 

U^.t) = ^e Ü'* '  nt) (111-14) 

Substituting into the equation of motion (eq. 111-12), 

[ciju ^i ^ " P"26^1
 \ - 0      (III-15> 

Letting q, be the k  component of the unit vector q, and 

putting n2/q2 ■ v2, we have the following secular equation: 

ici3k^i ^ - ^V - 0 ^m-l5> 

For a particular value of q there are three real positive roots of 

eq. (111-16): 

pvj2 - Cj2 (111-17) 

where C is proportional to a combination of elastic constants. Once the 

eigenvalues are found the direction cosines of the displacement vector 

(O,6,Y) can be calculated. 

If the elastic constants are known, the velocities and the displace- 

ment direction cosines of different phonons can be computed. Conversely, 

if the velocities are measured, we can calculate the elastic constants. 

For quartz the elastic constants at room temperature have been measured 

by ultrasonic techniques. Table III-la-b give for alpha and beta quartz 

the roots of eq.(III-16), the computed velocities and the particle dis- 

placement direction cssines (a,3,Y) for four values of q;  [100], [010], 

[001], and [110] (73). 
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In Brillou^i scattering the acoustic modes couple to the light 

through the modulation of the dielectric constant by the strain waves 

that are thermally excited in the crystal.  This elasto-optic or photo- 

elastic phenomenon is called the Pockel's effect and is described 

mathematically by (9): 

Aeij  "  "Vj  Pijk)lXk£ (1II-18> 

where e. is one of fhe three principal values of the dielectric tensor 

and the P1.kJ, a ^v'vj * ^-Hik are t^e P00^6!'8 Cor elasto-optic or 

photo-elastic) coefficients.  Since the intensity of the scattered light 

is proportional to the mean square of the fluctuations in the dielectric 

constant, the intensity of the scattered light will be proportional to 

the square of the Pockel's coefficients. For each crystal system, the 

Pockel's coefficients are restricted by symmetry and some vanish 

Identically. These coefficients can be written in reduced notation and 

put in a 6 x 6 matrix form.  In general, the matrices of the Pockel's 

coefficients are not symmetric, i.e., p  ^ p  (9). 

The ^ymmet^ized strain (eq. III-ll) for a plane wave solution of 

eq. (111-13), is- 

\i ' I {\\+ h\} 1^1 el(?'f'fit)       ^II-19> 

from eq. '.,111-18), the fluctuations of the dielectric constant about the 

mean, using e^. (111-19) is: 
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Hence the intensity of the scattered light is proportional to 

where the mean square Fourier strain component jyq|2 is given by 

thermodynamlc fluctuation theory (19): 

11     Vpv 2 
a 

If we write the intensity of the light scattered by mode a, in 

terms of the Rayleigh ratio (33) defined as the scattered intensity 

polarized In the EJ direction, per unit volume per unit solid angle per 

unit incident intensity polarized in the E. direction (E. and E. are 

unit vectors), we have 

R^ - -4kT[E .f'01.^]2 (111-22) 

where 

T  = p   <——= —^-1 (111-23) 

These T. 's determine the selection rules and once they are calculated 

we can determine which modes will be observed for a given q and a given 

choice of the polarization of the incident and scattered radiation.  If 

the elastic problem is solved for a particular choice of q we caa find 

the components of the strain.  In six component forms the strain is (9); 
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x2 
x3 

x5 
l_x6_J 

q2W2 

(qiMs 
(qiM2 

qs^a) 
qsMi) 
qz^i) 

(111-24) 

For alpha quartz, symmetry D3, certain Pockel's coefficients vanish.  The 

components of T for any acoustic mode of alpha quartz using eq.(III-23) are 

Tl 

Tl 

T3 

Tit 

T5 

Te 

Pu   P12   P13   Pm 

P12 Pll Pl3 Pi«. 

P31 P31 P32 0 

Pu Plfl 0 v^ 
0 0 0 0 

0 0 0 0 

0 0 

0 0 

0 0 

0 0 

?u^ Pi.1 

Pi«. p6i 

qivi 

q2»ji2 

q3M3 

(q2U3 + qaWa) 

(qiwa + q3Wi) 

(qjjjj + 42H) 

(111-25) 

The calculation of the T natrlx Involves carrying out the matrix 

multiplication above.  Table III-2 gives the T matrices, the velocities 

and direction cosines of the phonons propagating In the [100], [010], 

[001] and [110] directions. Also shown are the components of the T 

matrix studied for various choices of the polarization of the Incident 

light and scattered light (V S light polarized perpendicular to the 

scattering plane, H = light polarized in the scattering plane). 

If the Pockel's coefficients are known, from the T matrices we can 

predict the intensity of the Brillouin components.  Conversely, from the 

intensity of the Brillouin components we can measure the Pockel's coeffi- 

cients. The Pockel's coefficients for most crystals are not known (75). 

For alpha quartz, the Pockel's coefficients have been measured but the 

n suits are over 60 years old (76)!  These values are given in Appendix A. 



Table III-2a 

[10C1 

100 

Pua PIUY + P666 P'ti+Y + Pitiß 

PitUY  + P.iß Pul« P310 

pv' 

L T2 Ti 

86.9xl010dyne8/cin2    69.3xl010dyne8/an2    28.8xl0lüdyne8/cm?- 

a 

ß 

Y 

1 

0 

0 

0 

.52 

-.85 

0 

-.85 

.52 

1   + + + 1    ~ + 

For    k^    -   ^ [1 1 0]    and    k      -    - [1 1 0] 
/2 8        /T 

+ - 
or    k. - [1 1 0]    and    k      -    i {1 1 0] 

•2 S /2 

Polarization Choice Observed Components 

vv TS32 

VH (Taj -. 732)? 

HV (T13 " T32)2 

HH (Til - Ti2)2 

-ta 



Table III-2b 

q    -    [010] 

101 

T: 

Piaß + Pmv Peso Puia 

P660 Pnß  - Pl^Y     "Pmß + PtHtY 

P^a -Pulß + ?klty P3le 

T2 

V2 95.57xl010 

dynes/cm2 
49.46x1010 

dynes/cm2 
39.89xl010 

dynes/cm2 

a 0 0 1 

8 -.90 -.43 0 

Y +.43 - .9 0 

•* 1     T t * 
For    k,    -   - [1 1 0]    and    k 

i        /j s 

+ - 
or    k. - [1 1 0]    and    k 

V2 

- [1 1 0] 

1    + * - [1 1 0] 
/2 

Polarization Choices Observed Compon 

W T,32 

VH ('.31 - T32)
2 

HV (T31 +T32)
2 

HH (Til - T22)2 



Table III-2c 

102 

[0011 

P13Y + Pn,8 

Pmot 

PV4OI pU4 

P13Y - piuö       Puuß 

Pi^e P3..Y 

a 

Tl 

V2 10&.75xl010 

dyne8/cm2 
58.18xl010 

dyne8/cm2 
58.18xl010 

dynes/cm2 

0 0 ] 0 

6 0 0 -1 

y 1 ü 0 

For 
t     -   i [t 0 11    »ad   l8   -   Ml 0 I] 

1 /2 ß        ^ 

or    k. -    i [I 0 11     and    ka    -    i [1 0 11 
/2 n 

Polarization Choices Observed Components 

W T22
2 

VH (T21 + T23)2 

HV (T2i - T23)
2 

KH (Tn - T33)
2 
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Table III-2d 

q - ^ [110] 

T: 

opn + 0P12 + YP114 YPlU + (a + ß) p6f YPU«» + (a + ß) pi,i 

YPm + (a + 6) p66 apiz + ßpn - YPiu (a - ß) Pm + YPi*i» 

YP414 + (a + ß) pj»!  (a - ß) p^i + Yp^t«    (a + ß) P31 

v2 92.12x1010 

dynes/cm2 
60.11xl010 

dyne s/cm2 
32.65xl010 

dynes/cm2 

0 -.72 -.09 -.60 

3 -.59 -.61 + .53 

Y -.38 -.78 .49 

For k  -  1100]  and k8 -  [TOO] 

or kJ [lOO]    and k [100] 

Polarization Choices Observed Components 

W T33
2 

VH 

HV 

HH 

T312 

T2 32 

Tl2
2 
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B.  PAST EXPERIMENTS 

In 1930 E. Gross observed the Brillouin components in light 

scattered by crystalline quartz (77).  This was the first observation 

of Brillouin scattering in a solid.  Brillouin and Mandelshtam had 

predicted that these satellite lines would arise from "... thermal 

elastic waves which propagate in the medium with the velocity of sound 

and produce periodical variations of the amplitude of the scattered 

light, thus giving rise to two new frequencies" (77). 

Following the observations of Gross, investigators in India also 

observed the Brillouin components in crystalline quartz (78). Exten- 

sive theoretical and experimental work has been performed on quartz by 

Indian scientists starting In the 1930*8 and continuing into the present 

decade (79). 

The first observatirn of the Brillouin spectrum of quartz using a 

laser source was reported in 1966 (80).  In recent high resolution 

Brillouin experiments on quartz using a single frequency laser, the 

linewidths (<* absorption of aound) as well as the frequency shifts have 

been measured (81). 

Brillouin scattering was not used as a technique to measure the 

elastic constants of solids until the 1950's (82).  Elastic constants 

of solids had been measured by several methods:  the static method 

(83), the resonance, or dynamic method (84), the ultrasonic method (85), 

and by means of light diffraction (86).  Since quartz is widely used 

as a transducer, there are several reliable measurements of the elastic 

constants of alpha quartz at room temperature (74, 82-89).  There have 

also been measurements of tbe temperature dependence of the elastic 
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constants of alpha quartz (1", 90-92) and measurements of the elastic 

constants of beta quartz (93, 9V 95), but these have been made with 

the lower frequencies associated with the conventional methods men- 

tioned above, not light scattering. 

C.  APPARATUS 

Since Brillouin shifts ar*e generally only a fraction of a cm-1, a 

high resolution spectrograph and a relatively narrow bandwidth exciting 

light source are required. The pre-laser Brillouin studies were per- 

formed «ith a high resolution prism or grating spectrograph using a 

single line of a Mercury arc as the exciting source. 

The Brillouin apparatus uned in the present experimentt» is basically 

the same as that used by Chiao and Stoicheff (96) and has been described 

in the literature (97).  Fig.(III-3) shows the layout of the Brillouin 

apparatus. A Spectra Physins v.Model 125) He-Ne laser with an output of 

80 mw at 6328 A serves as the exciting source.  The polarization of the 

emitted light could be changed continue isly by a Spectra Physics 

(Model 310) polarization rotator. Normally the incident light is polar- 

ized either perpendicular (V) or parallel (H) to the scattering plane. 

The beam is focused by a 50 cm focal length lens (L ) into the quartz 

sample placed in the specially constructed oven (Appendix B). Light 

scattered at 90 s; 1° to the Incident direction Is collected and made 

e 
parallel by a 23.5 cm focal length lens (L ). A 6328 A, narrow pass 

filter is placed after the lens to eliminate the >-lackbody background 

when working at elevated temperatures. At times it: was necessary to 

select a certain polarizaclon of the scattered light and this was d-m« 

with a Polaroid HN-38 polarizpr. 
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The flattered light was frequency analyzed by a pressure swept 

Fabry-Perot etalon (98). The etalon consists of a pair of Perkin- 

Elmer fused quartz, 2 inch diameter, X/IOO interferometer flats 

separated by an invar spacer. The flats were coated for a reflectance 

(R) = 98% at 6328 A. This gave a contrast of vLO14.  The etalon spacing 

was the same throughout the experiments, 0.3 cm ± 1% which yields a 

free spectral range (FSR) of 1.67 cm-1 •» 50 GHz. The overall working 

finesse of the system, measured as the ratio of the FSR to the full 

width at half maximum of the Rayleigh peak, was between 25 ?nd 35, 

which for a 0.3 cm spacer     corresponds to a resolution of 2.0 to 

1.4 GHz. This approached the maximum finesse obtainable with the laser 

whose linewidth was 1.5 GHz. 

The pressure scan was linearized with a constant differential flow 

controller made by Moore Products Co. (Model 63-BU-L). The flow rate 

of the dry nitrogen gas was controlled by an Olin-Mitheson (Model-4133) 

needle valve. The high pressure side of the controller was kept at 

2 atmospheres by a regulator valve  With this back pressure the flow 

rate was constant to ^1% over 2 orders. 

An iris diaphragm, which followed the Fabry-Perot, served as the 

system apertuce stop, determined the collection solid angle and the 

diameter of the plates used. Only the 2.5 cm central region of the 

Fabry-Perct plates was used. 

A 36 cm. f.1.lens was used to focus the parallel light from the 

Fabr.--Perot onto a 1.3 mm. pinhole which blocked all but the central 

fringe. A 20 cm. f.l.lens was used to focus the light passing through 

the pinhole onto the photocathode of a dry-ice cooled, ITT-FW130 
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photomultiplier tube. The PM tube had an effective photocathode 

dlamcL«! of 0.1 inch with an S-20 surface. With this small cathode 

the dark count rate was 75 cts/sec at room temperature and 0-2 cte/ 

sec at the temperature of dry ice.  The signal processing clr-uitry was 

the same as that used in the Raman scattering experiments:  an emitter 

follower, linear amplifier, single channel analyzer, ratemeter and 

strip chart recorder. 

The Brillouin frequency shifts were measured directly from the 

recorder charts. The centers of the peaks were determined by graphically 

dividing in half the width of the peaks near the half power level. The 

shift j in fraction of an FSI^was taken as the distance between the 

Stokes and anti-Stokes components of the m  order spectrum divided by 

the sum of the m-1 to m anti-Stokes and m to nri-1 Stokes component sepa- 

ration. Measuring in this way averages the component displacemento on 

the trace in auch a way that errors due to uniform changes of the scan 

rate are cancelled. 

Three different samples of natural Brazilian quartz were used. 

The samples were approximately cubic in shape with each edge abort 12 mm 

in length.  Each sample was cut and polished with the crystallographic 

axes appropriately oriented so that the incident and scp.ctered wave- 

vectors were perpendicular to polished faces.  In addition, a piece of 

synthetic quartz supplied by Sawyer Research Corporation was studied 

and the results were compared to the natural quartz. The samples of 

natural quartz were unusually clear and free from imperfections as 

evidenced by the small Rayleigh peak in the Brillouin spectrum shown 

in Fig. III-2. 



109 

D.  RESULTS AND DISCUSSION 

Table III-3 summarizes the results of alpha (250C) and beta quartz 

(ÖOCC) for the four phoncn propagation directions studied. We show 

the polarization of the phonon as determined from the solution of the 

elastic problemjCq.(111-15) (L = longitudinal, Tj - low frequency trans- 

verse, T2 -  high frequency transverse). We also state whether the optical 

coupling was strong enough to allow observation of the light scattered 

by the particular phonon. pv^ is given in terms of the elastic constants. 

In "he next two columns the m^arical values of pv2 measured by light 

sc tering are compared with the values calculated from published elastic 

constants. We immediately see that the agreement between the elastic 

constants measured by light scattering and the elastic constants measured 

by ultrasonics or other techniques is good.  Since the frequency of sound 

measured In Brillouin scattering is at least 3 orders of magnitude greater 

than the frequencies used in ultrasonics, we can conclude that there is 

no appreciable dispersion of the elastic constants for quartz, for 

frequencies up to ^30  GHz, 

There is disagreement .J.n the literature on the sign uf the elastic 

constant C-,u- '  Several authors report C,, > 0 (83, 90, 92) and several 

others. Including the IRE standards (3) select C  < 0 (74, 84, 89). 

From measurements of velocities it is impossible to remove the ambiguity 

because only C,. appears in the velocity equa ions (Table III-3). 

However by measurement of the Intensity of the Brillouin peaks we can 

determine the sign of 0^(99). 

±± 
We studied the light scattered by [Oil] phonons.  Since the positive 

-> 
directions of Y and Z are not known, there are four possible q direc ions 
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with light incident along Y and scattered along Z;  [Oil], [Oil], [Oil], 

and [Oil].  If we solve the elastic problem for the four q vectors with 

Cm > 0 and Cm < 0, we obtain the following eigenvalues and direction 

cosines: 

Clk>0 Cm<0 

ion] - [oli] 
L T2 

(A) 
Ti L T2 

(B-) 
Tl 

pv"(1010dyne8/aB2) 97.63 67.05 38.78 J30.5 41.97 30.99 

a 0 1 0 0 0 1 

B .52 0 -.86 .74 .67 0 

Y .86 0 .52 .67 -.74 c 

[Oil] - [Oil] (B) (A') 

pv2(10lodyne8/cm2) 130.5 41.97 30.99 97.63 67.05 38.78 

a 0 0 1 0 1 0 

8 -.74 -.67 0 -.52 0 .86 

Y .67 -.74 0 .86 0 .52 

From the measurement of the frequency shifts we distinguish between cases 

A-A' ard cases B-B'. We note that the magnitude of the directions cosines 

for A and A"  are equal but have different signs. The same is noted for B 

and B'. The particular scattering geometry selected had horizontally 

polarized light (H) incident along Y and unanalyzed light scattered along 

Z (T). Thus in terms of the T matrix, we study the T^ and the T5 elements 

(eq. 111-23). The ratio of the intensity of the longitudinal peak to the 

transverse peak is given by eq.(III-22): 

J 
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IL    PVT (T| + tih 
T^   '   —h-T T^ (111-26) h pv 2 (Tj + T25) 

Using the values of the Pockel's coefficients listed in the appendix 

and the calculated eigenvalues and direction cosines (Table 111-1), ve 

calculate the ratio in eq.(III-26): 

(a) For csca« A-A' we calculate 

A   Cm > o    A'   Cm < o 

IT < U I, > ln 

and we observe 

L   T2 *L   T2 

h  < h2 

(b) For cases B-B' we calculate 

B C^ > 0 B' Cm < o 

h>\ ^ < ^i 

and we observe 

h'\ 
Thus we conclude that C^ > 0. This result is In agreement with a similar 

calculation based on the phonons propagating along [100] (99). 

The temperature dependence of the frequency of 8 acoustic modes, 

(tl00]-L, [0101-L, [0101-T2, 10011-L, [001]-T, Ill0]-L, Ul0l-T2, lUOJ-Tx), 

was studied and the results are plotted in Figs. III-4 to III-8 . The 

temperature dependence of the frequencies of the modes studied all exhibit 
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Fig.  III-5.    Measured frequency £2  (cm-1) vs T  ("C) of 

the  [0101-L and  [010]-T2 phonons. 
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similar behavior. As the temperature Is Increased from room tempera- 

ture to the transition temperature the frequency decreases gradually 

to a value that is 10 to 20% of the value at room temperature. At the 

transition temperature the frequency reaches a minimum value and jujit 

above the transition temperature there Is an abrupt increase (^15%). 

At the temperature corresponding to the minimum of the frequency, the 

intensity of the Rayleigh component increases to %10h  times its intensity 

just below the transition.  The origin of this anomaly in the Rayleigh 

scattering will be discussed in the next chapter. 

Fig III-7 is a plot of the temperature dependence of the frequency 

of »-he [110]-L mode for samples of natural quartz and synthetic quartz. 

We see very good agreement between the two samples. 

Fig. IXI-f is» a plot f the temperature dependence of the intensity 

of the [100]-L Brillouln component. Eq. (III-22) predicts a linear 

temperature dependence of the intensity far from the transition tempera- 

ture where V 2 is independent of temperature (Fig. III-A). Ihis is 
JU 

observed in Fig. III-9,  At the transition temperature where there is 

an abrupt Increase in the velocity, there is a corresponding decrease 

in the intensity due to the l/V* factor in eq. (111-22). This also is 

observed In Flg. III-9. 

From Table III-2 we note that we can measure the temperature 

depu/Hence of the following elastic constants: CJI, C33, Ci^ and C^. 

Since the Cv'ollng to the [OlOj-T^ mode is too weak to observe, we could 

not measure Cg6 ■ ,   (Cn- 012)«  ^n none of the cases studied were we 

able to measure C13. Wi.H CJJ measured by the [100]-L phonon, we added 

and subtracted the frequencieb of the [010]-L and [010]-T2 to find Ci^ 
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and Cm- Measurements of [010]-T gave us another method of determining 

Ci^; the two measurements agreed. Fig.  III-lO is a 

plot of the temperature dependence of the elastic constants Cn. C33, 

Ci^ and Cm measured by light scattering. Also plotted, for comparison, 

are the temperature dependence of the elastic constants as measured by 

ultrasonic techniques (11, 90, 92, 94). We see that there is good agree- 

ment between the temperature dependence of the elastic constants measured 

by light scattering techniques av.a the temperature dependence of the 

elastic constants measured by conventional ultrasonic techniques and we 

can conclude that there is no appreciable frequency dispersion of the 

elastic constants up to ^30 GHz. 

auBS 
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Comparison is made with the elastic constants measured by ultrasonic 
techniques (11, 90, 92 and 94). 



123 

CHAPTER IV 

THE ALPHA-BETA TRANSITION REGION 

In Chapter I we reviewed the accepted theory of Lhe quartz transi- 

tion as proposed by Ginzburg (31). We repeated Ginzburg's calculation 

and predicted an increase in the scattered light at the transition 

temperature of M-O1*, We also discussed the experiment of Yakovlev 

et al., who observed that the scattering of Hg light by quartz increases 

by 'vie'* over the room temperature Intensity and that under white light 

illumination the scattering volume appeared as a "fog zone" (35). This 

phenomenon was termed "critical opalescence" since it resembled the 

intense scattering (known as critical opalescence) observed in fluids 

near the critical point.  It has been generally accepted that the large 

increase in scattering at the alpha-beta transition arises from the 

divergence of the fluctuations of the order parameter n. Ginzburg 

identified n with the totally symmetric Ai optical mode whose room 

temperature frequency is 207 cm~^. As the transition temperature is 

approached, the frequency of this mode would decrease toward zero while 

the fluctuations of n diverge. 

In this chapter we investigate the Raman and Brillouln scattering 

la the transition region, 570oC to 5760C, and study the intense Rayleigh 

scattered light at the transition temperature (100). 
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A,  RAMAN SCATTERING IN THE ALPHA-BETA TRANSITION REGION 

Iv Chapter II we studied the Raman scattering by crystalline quartz 

from 20oK up to 8730K (=600oC).  We showed that it is not the 207 cm-1 

line, but a small Ai satellite at 147 cm"1 at room temperature who&e 

frequency approached zero as T * T from below.  The probable origir of 

this complication was discursed in terms of anharmonic coupling between 

one and two phonon excitations (57). He showed that at room temperature 

the 207 cnr1 line is essentially a zone center Aj optical vibration, 

while the feature at 147 cm-1 is a two phonon zone-edge excitation. As 

the temperature is raised the two excitations become mixed due to the 

anharmonic coupling and the observed features can no longer be described 

as one or two phonon processes, ^or temperatures near the transition 

temperature, the excitations again become distinct and the' l^w frequency 

component has become the one phonon mode and the high frequency component 

is the two phonon excitation. Thus, in this s-^.tion we restrict ourselves 

to temperatures close to the transition temperature so that the low 

frequency Ai vibration (still called the 147 cm~1line) is the "soft" 

zone center optic mode. 

The results of the transition region study of the frequency of the 

147 cm-1 line are shown in Fig. IV-1. We see chat on heating the 

frequency decreases to a minimum of 30 cm-1 at the alpha to beta transi- 

tion temperature, T „ ■ 573.40C, at which point the line disappears from 

our spectra. On cooling, the line reappears at the beta to alpha transi- 

tion temperature, Tß ■ 572.40C, one degree below the terrperature at which 

it disappears on heating.  The soft component is quite broad (> 80 cm"1; 

Flg. II-8) when it attains its minimum frequency of 30 cm-1. The intense 
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Rayleigh scattering suddenly appears with the disappearance (on heating) 

and the reappearance (en cooling) of the Raman components. The spectral 

width of the Rayleigh line was never resolved in this experiment (instru- 

mental resolution: ^2 cm-^). 

Thus the smooth collapse of the soft mode into an overdamped quasi- 

elastic component envisioned by Ginzburg is not observed and the Intense 

Rayleigh scattering cannot be considered as the overdamped remnant of 

the soft optic lattice vibration. 

We also studied the intensity of the 355 cm'1 line as a function of 

temperature in the transition region. We recall (Table 1-3) that the 

355 cm-^ line is a Raman active A^ vibration in alpha quartz which becomes 

a Raman inactive and infrared inactive B^ vibration in beta quartz. Its 

frequency changes very little with increasing temperature (Fig. II-6) and 

its intensity decreases steadily toward zero as T -♦■ T (Flg. II-7). 

Fig. IV-2 Is a plot of the intensity of the 355 cm-1 line in the transi- 

tion region. It shows that the intensity ex the 355 cm~l line exhibits 

the sane thermal hysteresis that was observed in the frequency of the 

"soft" mode (Flg. IV-1). What is striking is the persistence of ttte 

355 cm-1 Ittte through the fog zone and into the beta phase. On further 

heating of the crystal, this line gradually disappears. On cooling from 

the beta phase this spectral line appears before the beta to alpha 

transition occurs. When the fog zone appears and the crystal transforms 

to alpha quartz, there is an abrupt increase in the Intensity of the 

355 cra"^ line. The presence of this spectral feature in the beta phase 

where it is forbidden by group theory is probably due to strains present 

in the crystal as it undergoes its transition. These strains locally 
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break the symmetry and can allow a normally ina^ ..ive Raman mode to 

become Raman active. 

B.  BR1LL0ÜIN SCATTERING IN THE ALPV.t-BETA TRANSITION REGION 

In Chapter III we discuss^., the Brillouin scattering by crystalline 

quartz from room temperat'-.e up to 600oC.  In this section we restrict 

ourselves to Brillouin measurements of phonons propagating in the [100], 

[010], [001] and [110] directions in the transition temperature region, 

570oC - 5760C. The spectra of all phonons studied showed a distinct 

change at the transition temperatures. Flg. IV-3 shows the spectra of 

the [100] phonons for (a) alpha quartz just below the alpha to beta 

transition temperature <T  = 574.30 * .03oC), and (b) beta quartz just 

above the transition temperature. Flg. IV-4 is a plot of the measured 

frequency shifts of the [100]-L phonon in the 5710C - 5760C temperature 

region. We see that on heating the frequency exhibits an abrupt increase 

at T -■ 574.3*C as the alpha to beta transition occurs, and on coolit;g 

the frequency gradually decreases and at Tft ■ 573.0oC the transition 

beta to alpha occurs. At these two temperatures, intense Rayleigh scat- 

tering is observed. 

Figs. IV-5 and IV-6 show the behavior of the linewidth and the peak 

intensity of the [lOOj-L Brillouin peak in the transition temperature 

region. The temperatures where the abrupt changas occur in these properties 

are the same temperatures at which the fog zone appears.  It is interesting 

to note that the cooling curves of the frequency shift and the linewidth 

strongly tesemble, aside from the discontinuities, the relaxntional process 

occurring In second order lambda type transition treated theoretically by 
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Landau and Khalatnikov (101) and observed in ferroelectric TGS in ultra- 

sonic experiments (102) and in Brillouin experiments (103). 

The measured Brillouin frequencies vs temperature in the transition 

region for the phonons:  [0ir]-L, [010]-?;.. .OOIJ-L, [OOll-T and UlOl-l 

in natural quartz are shown in Figs. IV-7 to IV-9.  In all curves a 

thermal hysteresis is observed varying from 0.55 C to 1.30 C"1.  The 

hysteresis loops of the longitudinally polarized phonons are approxi- 

mately triangular in shape and for the transversely polarized phonons 

are approximately rectangular in shape. For the longitudinally polarized 

phonons there are large increases in the frequency on heating ('vlSX) 

while for the transversely polarized phonons the change in frequency is 

smaller (>5%). 

In Figs. IV-10 to IV-12 we plot the calculated elastic constants, 

^llt c33 > M»«» a**** Cm ^ the transition region. There are no nltrasonic 

measurements this close to the transition temperature to compare with our 

results. 

In all crystals, the fog zone was observed at the temperatures where 

the abrupt changes in the spectra occurred. The temperatures at which 

the fog zone appeared differ for the different phonons ctudleü. This 

can be attributed to the fact that different crystals were used and the 

transition temperature can vary from crystal to crystal (x0Ä). Also 

there is a lack of temperature reproducibility after dismantling and 

reassembling the oven. Considering all the cases studied, the average 

transition temperatures are: 
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T . - 573.6 * .60C 
o3 

T0 - 5 '2.6 * .50C 

Thus a hysteresis of about 1 Ca was observed. This hysteresis Implies 

that the transition may well be first order, rather than second order as 

predicted by Glnzburg (31). 

The sudden Increase In the Raylelgh scattered light (^10k  times the 

room temperature Intensity) occurs at the same frequency as the unshifted 

light within the resolution of the Brlllouln experiments (^.06 cm-1). 

There was no observed spectral structure to the opalescence. Thus in the 

Brlllouln experiment we see no mode whose frequency approaches zero and 

the observed opalescence Is not due to any soft acoustic mode. 

C. RAYLEIGH SCATTERING IN THE ALPHA-B.^TA TRANSITION REGION 

In the Raman and Brlllouln experiments the intense Raylelgh scatter- 

ing in the transition region was spectros.'.oplcally indistinguishable from 

pure elastic scattering. Since the spectral linewidth of the "critical 

opalescence" was too small to measure with either the Raman spectrometer 

or the Brlllouln interferometer, we next consicered performing a light- 

beating experiment of the type used to measure th* Raylelgh linewidth in 

critical opalescence in fluids (105). This experiment was never 

performed since we discovered during preliminary vlsiu.1 observations of 

the scattering coluro that the "critical opalescence" is, in fact, elastic 

scattering. 

Wher laser light is scattered from a stationary target, t>e scattered 

light exhibits a characteristic granular pattern. If the target ."oves 
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slowly, the granularity also appears to move. If the target moves so 

rapidly that the granularity changes in a time shorter than the response 

time of the eye, the granularity disappears, and one sees a uniform 

scattered intensity distribution.  (This effect, which arises from the 

spatial coherence of laser light, was discussed by Rigden and Gordon In 

1962 (106).) 

We observed that when the crystal was below the transition tempera- 

ture, the scattering column appeared to be homogeneous.  (A photograph 

of the scattering column with 15 min exposure is shown in Fig. IV-13a. 

The bright specks are crystal Imperfections.) When the crystal was 

heated to the transition temperature the "fog zone" which appeared did 

not look uniform, but exhibited the characteristic granularity associ- 

ated with elastic scattering (107). Once the fog zone started to 

traverse the crystal its progress could not be halted. It took 2 to 3 

mln for the fog zone to pass through the crystal. Fig. IV-13b is a 

photograph of the scattering column In the fog zone with 2 sec exposure. 

The granularity is apparent in the photograph. 

In Fig. IV-13c we show a photograph with 5 mln exposure in the 

beta phase.  In addition to the specks caused by imperfections, there 

is some residual structure visible which slowly disappears as the tem- 

perature is further increased. On cooling, the above sequence is 

reversed, with the fog zone reappearing at a lower temperatu-.e, as we 

indicated earlier. 

The persistence of static granularity for many seconds in the light 

scattered from the fog zone suggests that the intense scattering is 

completely elastic, originating from some essentially static phenomenon 

rather than from thermodynamic fluctuations of the order parameter. A 



—Himmr— 

Fig. IV-13. Photographs of the scattering cclumn in 

crystalline quartz illuminated by a 6328 A He-Ne laser beam. 

(a) T < T , 15 min exposure; (b) T = T , 2 sec exposure; 

(c) T > T , 3 min exposure. 
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possible explanation of this effect was suggested by Young who performed 

extensive X-ray measurements on quartz through the alpha-beta transition 

(20). Young found that as the transition is approached from below, the 

structure separates into domains of Dauphinä (or electrical) twins. The 

twins, which are related by 180° rotation about the C axis, correspond to 

opposite signs of the order parameter n (see Ch. I). As the transition 

is approached, the domain size decreases and the density of domain waxls 

Increases. Young suggested that the development of Dauphin^ twins is a 

special type of transition in the long range order which starts a few 

degrees below the alpha-beta transition and continues until the crystal 

is completely twinned, i.e., equal volumes of each twin. Within each 

twinned region the short range order of either the 04 or 02 (Fig. 1-4) 

configuration is preserved. The completely twinned state, in which the 

long range order transition has gone as far as it can and still be termed 

long range, may be considered as a special kind of intermediate state. 

This complete twinning occurs at the start of the alpha-beta transition 

proper which is a transition of short range order. 

The large Increase in the light scattering presumably arises from 

inhomogeneous strains present in domain walls which perturb the dielectric 

constant locally leading to large light scattering efficiencies, an effect 

which we have previously observed in ferroelectric TGS (108N. T'.JUS, it 

is the domain walls produced by the microtwinning which woula be respon- 

sible for the observed opalescence. 

Another possible source of the inhomogeneitier in the index of 

refraction in the quartz crystal causing the "opalescence" near the 

transition temperature is the formation rl beta quartz regions inside 
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the Alpha quartz crystal. This type of nucleation is possible if the 

trfAsitlon is first order. On heating the crystal near T beta quartz 

c/n exist in a metastable state wltfhin the alpha quartz structure. 

<Conversely, on cooling from the beta phase, alpha quartz can exist in 

a metastable state in the beta quartz structure.)  Since the indices of 

refraction of beta and alpha quartz differ, the regions of beta quartz 

will scatter light. An analogous effect could occur in a fluid just 

below the condensation temperature in the absence of gravity. The 

fluid might break up into droplets which would produce anomalous scat- 

tering.  Such an effect would occur most strongly very close to T since 

It would only become energetically possible as the surface t^noxon 

vanishes. In the case of quartz, the droplets—beta "droplets"—are 

locked in position in the alpha quartz "fluid." 

He can estimate the size of the beta regions within the alpha 

quartz structure from a measurement of the Intensity of the scattered 

light at the transition temperature. We assume spherical regions of 

volume V and index of refraction n. in a medium with an index of refrac- 

tion n . If jn -nJ - |An|«l we apply the Rayleigh-Gans criterion 

and calculate the Rayleigh ratio (109): 

«2 2 V 
R . JL- (n2 - n2r s cm-1 

C   a    ß  2 

C 
2n2 (An)2 V cm"1 

where we have assumed that at the temperature where th» maximum scatter- 

ing occurs the spherical beta regions occupy half of the scattering 
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volume. We set this equal to the measured Rayleigh ratio of the light 

scattered by quartz at T (eq, 1-26): 

R - 2.0 x lO-W1 - -L- 3 x lO'^lca-l (x0 - 6328 X) 

Using the measured values of n and An near T (1-25) we can solve for 

V and find the radius of the beta regions within the alpha structure. 

The results of this calculation yield a radius for the beta region of 

r ^ 500 A. (In a similar manner we could have assumed we were cooling 

the crystal and calculated the size of the alpha regions within the 

beta structure.) This result is consistent with the results of 

Yakovlev et al, who observed a X'1* dependence of the scattered Intensity 

within the fog zone and deduced that any optical non-uniformities were 

smaller in size than the wavelength of light (35). 

Recent small angle X-ray scattering experiments performed on quartz 

revealed no excess scattering during the phase transition (110). This 

result favors the first of the above explanations because the X-rays 

are insensitive to the microtwinning of the type Young suggested since 

the electron densities of the two Dauphin« twins are the same, while the 

X-ray scattering was observed at sufficiently small angles (< 1/4°), 

so that the regions of beta quartz (of the size estimated above) would 

have produced additional scattering near the transition temperature. 

D.  CONCLUSIONS 

On the basis of the Raman, Brlllouin, and Rayleigh observations, 

we conclude: 

1. Because of the static granularity of the light scattered from 

the fog zone, we believe that quartz does not exhibit critical 
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opalescence in the usual sense of.  diverging fluctuations of 

the order parameter, despite the excellent agreement between 

the observed scattering intensity and the theoretical predic- 

tion based on the assumption of critical point fluctuations. 

2. The intense scattering which Is observed near the transition 

temperature is due to static inhomogeneitles of the index of 

refraction of the quartz crystal.  These may be a consequence 

of the extensive mictotwinning of the Dauphlnd type that occurs 

near the transition, or the formation, on heating, of regions 

of beta quartz within the alpha quartz structure. The results 

of recent X-ray experiments suggest the former explanation. 

3. The iysteresis observed in the Raman and Brillouin experiments 

suggest that the transition is first order rather than second 

order.  However, this distinction is not really adequate since 

the phenomenon of micro-domain formation considerably compli- 

cates the description of the transition. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

The temperature dependent Raman and Brlllouln scattering spectra 

of crystalline quartz have been studied with special emphasis on the 

alpha-beta phase transition region. 

In the Raman experiments we studied the Raman active Ax and E 

vibrational modes.  Scott and Porto (45) showed that the LO-TO 

degeneracies of some of the E modes were lifted due to long range 

electrostatic interactions arising from the oscillating electric field 

associated with the infrared activity of the E modes. Our results 

agree with those of Scott and Porto. Also, the frequencies of the E 

modes were measured as a function of temperature and showed little 

change with increasing temperature. 

Theoretical considerations (31) and early temperature dependent 

Raman studies of quartz (23) showed that the frequency of one of the 

Aj vibrations, the 207 cm'1 modesdecreased toward zero as the transition 

temperature was approached from below. Our studies revealed an extra 

line of Ai symmetry (frequency at i-oom temperature; 147 cm-1) whose 

frequency decreased toward zero as the transition temperature was 

approached.  In addition, above the transition temperature, in the beta 

phase, there was an extra line of Ai symmetry.  Scott (57) suggested 

that the extra line in the alpha and beta phases Is a second order Raman 

line. He attributed the anomalous temperature dependent behavior of the 
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first and second order Raman lines to anharroonic coupling between 

the "soft" zone center, 207 cm~^  excitation and the two zone edge 

acoustic excitations.  In the transition region, the low frequency line 

is the "soft" zone center phonon. The frequency of this phonon did not 

go to zero at the transition temperature but decreased to a finite 

value of 30 cm-1 and disappeared from our spectra. Coincident with 

this disappearance a region of increased elastic scattering traversed 

the crystal. Because the frequency of the soft mode does net decrease 

continuously to zero at the transition temperature, the observed 

"opalescence" is no' due to diverging fluctuations associated with the 

"soft" optic mode as had been proposed by Glnzburg (31). On cooling, 

the low frequency A^ vibration reappears at a temperature 1 C0 Icwc 

than the temperature at which it disappears on heating. 

In the temperature dependent Brillouin scattering experiments we 

found good agreement between the elastic constants measured by light 

scattering and the elastic constants measured by ultrasonic techniques. 

Thus no frequency dispersion in the elastic constants is apparent.  In 

the transition region, none of the frequencies of the acoustic modes 

studied approached zero as the transition temperature was approached. 

Thus the observed "opalescence" Is not due to any diverging fluctuations 

associated with acoustic vibrations. The hysteresis observed in the 

Raman and Brillouin experiments suggests that quartz undergoes a first 

order phase transition as opposed to a second order transition proposed 

by Glnzburg. 
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Observations of the Raylelgh scattered light in the transitira 

region showed that the large Increase in the elastic scattering (^lO1*), 

the so-called opalescence, was due to a static process as opposed to 

the dynamic process associated with true critical opalescence. The 

large Increase in scattered light at the transition temperatures was 

due to inhomogeneities in the index of refraction created by either 

the extensive mlcrotwinning of the Dauphin£, or electric, type as 

reported by Young in his X-ray analysis of the phase transition of 

quartz (20), or due to the formation of regions of beta quartz, on 

heating, within the alpha quartz structure. 
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APPENDIX B 

OVEN, TEMPERATÜRE CONTROL, AND TEMPERATURE MEASUREMENT 

OVEN 

There were several unusual considerations in designing an oven for 

light scattering experiments near the alpha-beta phase transition of 

crystalline quartz (5730C):  1) Temperature stability and control of 

±0.0ioC was sought with a minimum of thermal gradients across the sample 

region; 2) There had to be two colinear ports to allow light to enter and 

leave the sample region. A third port was necessary to observe the light 

scattered at 90° to the incident beam; and 3) Crystalline quartz frac- 

tures when heated too rapidly through the transition temperature region. 

This cracking can be minimized if the temperature of the crystal is 

changed slowly (£>). 

With these considerations in mind, a double oven structure with a 

high thermal mass vas constructed.  Fig. B-l shows a cross section of 

the oven. The outer container is a stainless steel can 15.5 inches in 

diameter. Harbison-Walker refractory cement was poured into the can 

making a wall thickness of 3.5 inches.  This large thermal mass prevents 

us from heating the crystal too quickly. The outer heater consists of 

two Kanthol (REH-1) heating elements placed on top of each other and 

connec ed in series.  Inside the outer heater is a stainless steel heat 

shield used to smooth out tempeiatura gradients. The inner heater is a 

single Kanthol (REH-AO) cylindrical heating element with holes in it to 
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allow the light to enter and leave the sample region. A hollow, Rhodium 

plated, 1.25 Inch diameter copper tube serves as an inner heat shield 

which fits inside the Kanthol element and smooths out the temperature 

gradients. The use of a ^ood thermal conductor like copper is strategic 

in reducing the temperature gradients near the sample region. The 

temperature gradients are estimated at 0.02oC/mm in the sample region. 

The Bhodium plating prevents oxidation of the copper at elevated tempera- 

tures. There are 6.5 mm holes in the heat shield for light input and 

output. A solid Rhodium plated copper cylinder is fastened to the inner 

wall of the inner heat phield to support the sample holder. The-sample 

holder is a solid cylinder of copper, 1 inch in height, 1.25 inch in 

diameter with a 11/16 x 13/16 inch hole for the crystal. There are 

three 5 ran diameter holes in this piece to allow the light to pass through 

the sample and to be observed. Fused quartz windows, 1/.6 inch thick, 

5 mm diameter, cover these holes to reduce air currents. Evacuated fused 

quartz cells, which allow light to pass through but limit any thermal 

loss by convection, extend out from the sample region to the outside 

section of the stainless steel can. Another solid, Rhodium plated copper 

cylinder fits snugly into the sample holder and seals the sample region. 

Thus the sample region is essentially surrounded by copper with beat 

being supplied from the sides. The heat loss due to the rising of the 

heated air was compensated for by a lavite plug with a heater embedded 

in the end plate.  The plug fits into the hole at the top of the oven 

and a constant amount of heat is supplied to the heater (20 watts). 
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TEMPERATURE CONTROL 

A block diagram of the temperature control and measuring apparatus 

is shown in Fig. B-2. The outer heater raises the ambieuc temperature 

of th> sample region to 550oC.  Thus only a small amount of power need 

be applied to the inner heater to increase the temperature of the sample 

to the transition temperature: 5730C. 

A Variac (Powerstat 2260) is used to limit the 220 V.A.C. line voltage 

applied to the primary of the transformer.  The Kanthc. heating elements 

have a very low resistance (less chan one ohm) and a step down transformer 

(220:32) is necessary to reduce the voltage epplied to the heaters. The 

maximum power ratirg of the outer heater is 1 kW at 32 V and 33 A. A 

Partlow time proportional controller (Model LFES) activates a mercury 

relay in the secondary of the transformer. The sensor of the Partlow 

controller is a steel tube encapsulating liquid mercury which expands and 

moves a temperature indicator which has a mlcroswitch mounted on it. As 

the temperature indicator approaches the set temperature the mlcroswltch 

makes contact with a rotating cam (2 rpm) attached to the set arm of the 

controller. The mlcroswltch activates the mercury relay and turns the 

outer heater off for a portion of the cycle.  This controller alone is 

able to control the oven within * 5 C0 at 550°C. 

A Fisher Proportional Controller (Model No. 15-177-50V2) with a 

thermistor sensor controls the power supplied to the inner Kanthol heating 

element.  Since this seating element has a very low resistance a trans- 

former is required to step down 010:8) the 110 V.A.C. output of the 

controller. The inner heater has a maximum power rating of 280 watts «.\t 

8 V and 35 A. The controller is essentially an A. C. bridge with the 
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thermistor as the variablft arm.  The error signal from the bridge is 

amplified and is used to trigger two SCR's which limit the output of 

the controller. The availability of a thermistor that can withstand 

a temperature of 600oC in an oxidizing atmosphere Is the limiting 

factor in our temperature stability.  The thermistor used was supplied 

by Carborundum Co. and has a resistance of ^300 ohms at 5750C. The 

temperature stability of the oven is 0.03''C/hr.  Since no spectrum 

took more than 1.0 minutes to record, the temperature is essentially 

constant during the recording of the spectra. 

In the trati^ition region the temperature can be changed by .03 C 

Increments. Each time the temperature is changed by 1 degree or less, 

45 minutes to an hour is allowed for the oven to equilibrate. 

TEMPERATUBE MEASUREMENT 

A Rosemount Engineering Company Platinum resistance thermometer 

(Model No. 104M48ACHT) is used for temperature measurement.  Its 

resistance is measured by an equal ratio arm (1 Kfl), laboratory con- 

structed Uheatstone Bridge. The adjustable arm of the bridge is a 

General Radio Decade box (Modfl No. 1432-W) with variable resistance 

from .01 ohm to 9999.99 ohms. The null detector is a Honeywell Elec- 

tronic Null detector (Model No. 10411-WG). The resistance of the 

thermometer in the transition temperature region is approximately 1230 

ohms and the slope of the R vs T curve is .75 fi/'C. Thus a .01 ohm 

change corresponds to a change in temperature of .0075 C0. Our sensi- 

tivity was limited by the amount of current ve could supply to the 

thermometer without appreciable self heating. The overall sensitivity 

of the temperature measuring system at 573<>C is 0.0?.oC. 
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Tae absolute accuracy of the temperature measured is wi'chin + 1 C0. 

No effort was made to compensate for the lead resists ice or changes in 

the leao resistance as the temperature of the oven is raised. The 

triple point resistance of the Platinum thermometer with all the leads 

used in the expcrin^nt was checked and found to be within 0.3 ohm 

(■0.2oC') of the calibrated value. The thermometer is an immersion type 

and has an element length of 1  inches.  Since the thermometer is placed 

above the sample the temperature read is averaged over a region above 

the sample. However» since the sample and the thermometer are surrounded 

by copper, and since the thermal gradients are very small, the tempera- 

ture read by the thermometer is close to that of the crystal. Also our 

measured transition temperatures agree very well with other published 

values of the transition temperature (1}. 

Summarizing the performance of the temperature control and measure- 

ment of our system: 

1. The sensitivity of the temperature control in the transition 

region is 0.03oC. 

2. The absolute accuracy of the temperature measurement is within 

±10C. 

3. The relative sensitivity of the temperature measurement in the 

transition region is 0.02oC. 
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